Candy Crush Stained Glass from “STEAM Lab for Kids”

 - by KitchenPantryScientist

It’s hard to believe that my new book “STEAM Lab for Kids” is already in the Amazon book store! I studied both art and science in college, so this one was SO much fun to write!

Last summer, my publisher made a few videos of projects from the book for me to share with you. Here’s the first one, which features some sugar science!

Try it!

Paper Marbling Project from STEAM Lab for Kids

 - by KitchenPantryScientist

More than just art-forward science, tech, engineering and math projects, my new book  introduces young learners to #STEAM visionaries including Louis Pasteur , Johannes Kepler, Katherine Johnson, Camille Claudel, August Rodin, Benoit Mandelbrot, Ada Lovelace and M.C. Escher.  Each chapter introduction includes words on how art and STEM have influenced #STEAM role models like Sophie Shrand of Science with Sophie, neuroscientist and violinist Kaitlyn Hova,  engineer and film maker Joyce Tsang, graphic artist-turned TV producer Christian Unser and musician Matt Wilson!  Here’s a peek at one of the projects…

Rainbow Science

 - by KitchenPantryScientist

Happy Saint Patrick’s Day! Yesterday, I demonstrated some fun rainbow science on The Jason Show. Click here to watch!

As part of the segment, I featured the “Rainbow Slime” experiment from my new book, “STEAM Lab for Kids,” which you can order from Amazon, Barnes and Noble, or your favorite online retailer. Here’s a sneak-peek at a few photos from the book.

Rainbow Slime from “STEAM Lab for Kids” by Liz Lee Heinecke

Rainbow Slime from “STEAM Lab for Kids” by Liz Lee Heinecke

Rainbow Slime from “STEAM Lab for Kids” by Liz Lee Heinecke

Football Science Experiments for Super Bowl 52

 - by KitchenPantryScientist

Footballs take crazy bounces, partly due to the occasional transformation of rotational (spinning) energy to linear kinetic (forward motion) energy when  a football hits the ground. We used an experiment created by Kelly O’Shea to replicate this cool phenomenon! Try it to see for yourself how the second or third bounce can be higher than the first one! No wonder it’s so hard to catch a football!

For more Super Bowl physics fun, make paper footballs and have your own match during the big game. Here’s my article on how to make them, how to play and the physics behind the fun! To see paper footballs in action and learn why players stay close to the ground when they tackle, check out this Super Bowl Science segment (above) I did this week on our Twin Cities CBS station.

And if you’re a Vikings fan like me…

Three Fun Science Experiments Using Bubbles

 - by KitchenPantryScientist

Blowing bubbles is a fun way to experiment with surface tension.

Dish detergent lowers the surface tension of water which allows you to blow bubbles, and additives like glycerine, corn starch and baking soda make bubbles more elastic and resistant to popping. (More science below.)

  1. You can use a statically-charged balloon to make a bubble glide across glass as if by magic: (Instructions in video.)

2. Create a square bubble by making a cube from straws: (Submerge the cube in bubble soap made using the recipe below, pull it out, blow a bubble above it and let the bubble drop into the cube)

3. Or blow a bubble inside a bubble inside a bubble by coating a smooth surface like glass and using a straw dipped in bubble mix (recipe below) to blow bubbles inside bubbles:

Here’s our recipe (from Outdoor Science Lab for Kids- Quarry Books 2016) that can also be used to make giant bubbles:

Mix together:

-6 cups distilled or purified water

-1/2 cup cornstarch

-1 Tbs. baking powder

-1 Tbs. glycerin (Corn syrup may be substituted for glycerine.)

-1/2 cup blue Dawn or Joy dish detergent. (Fairy, Dreft or Yes work well in Europe.)

image from “Outdoor Science Lab for Kids” Quarry Books 2016

The Science Behind the Fun (from Outdoor Science Lab for Kids-Quarry Books 2016)

Water molecules like to stick together, and scientists call this attractive, elastic tendency “surface tension.” Surfactants like detergent molecules, on the other hand, have a hydrophobic (water-hating) end and a hydrophilic (water-loving) end. This makes them very good at reducing the surface tension of water.

When you add dish detergent to water, the lower surface tension allows you to blow a bubble by creating a thin film of water molecules sandwiched between two layers of soap molecules, all surrounding a large pocket of air.

Bubbles strive to be round. The air pressure in a closed bubble is slightly higher than the air pressure outside of it and the forces of surface tension rearrange their molecular structure to have the least amount of surface area possible. Of all three dimensional shapes, a sphere has the lowest surface area. 

Of course, other forces, like your moving breath or a breeze can affect the shape of bubbles as well.

The thickness of the water/soap molecule is always changing slightly as the water layer evaporates and light waves hit the soap layers from many angles, causing them to bounce around and interfere with each other, giving the bubble a multitude of colors. Solutions like glycerine and corn syrup slow water layer evaporation, allowing bubbles to stick around longer.

Supercool! Ice Science for Kids

 - by KitchenPantryScientist

Under the right conditions, purified water can get much colder than 32 degrees before it freezes into a solid. This “supercooled” water will instantly freeze when it touches an ice crystal.

You don’t need a special lab to make supercooled water. In fact, you can make it in your own freezer!

Image from Outdoor Science Lab for Kids (Quarry Books 2016)

1. Place three 12 oz bottles of water (caps loosened and re-tightened) in the freezer. Two should be filled with purified water and one with tap water.

2. Wait 2 hours and then check them every 5 minutes. When the tap water is frozen, gently remove the other two bottles from the freezer. (Tap water freezes first, because it contains some impurities that help ice crystals form more easily.)

3. Carefully open one bottle of purified water and pour it onto a few ice cubes on a plate. The supercooled water from the bottle will instantly crystallize into ice when it hits the cubes, making slush. Try it with the second bottle. There may be some freezing time variation between freezers, so you may have to experiment to find the perfect amount of time it takes your freezer to supercool water!

You can do the same thing by putting bottled water in a cooler full of ice, salt, and water. Salt lowers the melting temperature of ice, which makes the salty ice water cold enough to freeze bottles of liquid. Try the same experiment using soda to make a slushy! (From Outdoor Science Lab for Kids-Quarry Books 2014)

Image from Outdoor Science Lab for Kids (Quarry Books 2016)

Rainbow Icicles -Winter Science for Kids

 - by KitchenPantryScientist

Grab your coat and head outside to try this fun winter science project!

Rainbow Ice (


You’ll need:

A large plastic zipper bag

Cotton kitchen twine

a toothpick or wooden skewer

ice-cold water

food coloring

a spray bottle

a squeeze bottle or syringe (optional, but helpful)

a very cold day (below 10 degrees F works best, but you can try it on any day when it’s below freezing)


Note: This experiment takes lots of playing around and results will vary depending on how cold it is outside. Remind your kids (and yourself) to be patient and try it on a colder day if it doesn’t work the first time around! If the bag leaks too quickly, try making one with smaller holes around the string.

Rainbow Ice (

What to do:

  1. Use a toothpick or skewer to poke 3 small holes in the bottom of a zipper plastic bag. Make one in the middle and one on each end.
  2. Cut three long (3 feet or so) pieces of kitchen twine and knot them at one end.
  3. Carefully thread the twine through the holes in the bag so that the knots are inside the bag to keep the strings from falling through. Try to keep the holes from getting too big, since the bag will be filled with water and you’ll want it to drip out very slowly around the string.

Rainbow Ice (

4. Attach two more pieces of twine to each top corner of the bag (above the zipper) to use for hanging the bag

5. Go outside and hang the bag from a low tree branch or railing.

6. Tie each of the three strings to something on the ground, like a rock, piece of wood, or the handle of an empty milk carton filled with water to weight it down. Arrange the objects so that the strings loosely radiate out at around a 45 degree angle. (See photo)

7. Add food coloring to some ice-cold water in a pitcher.

8. Fill the spray bottle with ice-cold water.

9. Add the cold colorful water to the zipper bag hanging outside. Zip the top of the back to slow the rate of leaking.

10. Immediately spray the strings with water to guide the leaking water down the strings.

10. Wait for the water on the strings to freeze. Use your syringe to add a little bit more water to the strings (same color) and wait for them to freeze again. Repeat until you have a nice layer of ice/icicles.

11. Refill the bag, using a different color of ice-cold water. Spray the strings lightly again. Repeat step 11.

12. Add layers of color to the icicles until you’re happy with the way they look!

Rainbow Ice (

The science behind the fun:

Icicles form when dripping water starts to freeze. Scientists have discovered that the tips of icicles are the coldest part, so that water moving down icicles freezes onto the ends, forming the long spikes you’ve seen if you live in a cold climate. When you add different colors of water to icicles in sequence, the color you add last will freeze onto the tip of the ice.

Here’s a cool article on icicle science by an expert, and another great article on “Why Icicles Look the Way They Do.”

You’ll find more fun ice science experiments in my book “Outdoor Science Lab for Kids” and in my upcoming books “STEAM Lab for Kids” (Quarry Books April 2018) and “Star Wars Maker Lab” (DK- July 2018)


Ice Science: Lifting an Ice Cube Using Salt and a String

 - by KitchenPantryScientist

Have you ever wondered why putting chemicals like salt on a road makes the ice melt?

To see how NaCl (table salt) melts ice by lowers the melting temperature of water, you’ll need an ice cube, a glass of water, and a piece of kitchen twine or string about 6 inches long and salt.

What to do:

Drop an ice cube in a glass of ice water.  Try to pick the ice cube up without your fingers by simply placing the string on it and pulling up.  Impossible, right?

From Kitchen Science Lab for Kids (Quarry Books 2014)

From Kitchen Science Lab for Kids (Quarry Books 2014)


Now, dip the string in water, lay it across the ice cube and sprinkle a generous amount of salt over the string/ice cube.  Wait about a minute and try again to lift the cube using only the string.  What happens?

From Kitchen Science Lab for Kids (Quarry Books 2014)

From Kitchen Science Lab for Kids (Quarry Books 2014)


It may seem like magic, but it’s only science. Here’s a video from my KidScience app where I demonstrate the experiment.

Salt lowers the temperature at which ice can melt and water can freeze.  Usually, ice melts and water freezes at 32 degrees Farenheit, but if you add salt to it, ice will melt at a lower (colder) temperature.

The salt helps the ice surrounding the string start to melt, and it takes heat from the surrounding water, which then re-freezes around the string.

Different chemicals change the freezing point of water differently.  Salt can thaw ice at 15 degrees F, but at 0 degrees F, it won’t do anything.  Other de-icing chemicals they add to roads can work at much colder temperatures (down to 20 degrees below zero.)  If it’s cold enough, even chemicals won’t melt the ice.


Pressure can also make ice melt at colder temperatures.  This is why ice skates glide on rinks.  The pressure is constantly melting the ice a where the blade presses down on it so the blade glides on a thin layer of water!

Give the Gift of #STEM: Homemade Science Kit

 - by KitchenPantryScientist

Image from “Kitchen Science Lab for Kids” (Quarry Books 2014)

There are few gifts more fun than a homemade science kit. Give a kid a bottle of vinegar and a box of baking soda and you’ll make their day. Throw in a bottle of Diet Coke and some Mentos mints, and you may be their favorite person ever. Make a kit for your kids or grand kids. Make one for your favorite niece or nephew. Encourage kids to make kits for friends and siblings.

Here are some ideas for items to include in your kit.I’ve highlighted links to the experiments on my website (just click on the blue experiment name) in case you want to print out directions to add to your kit. You can also find these experiments on my Kitchen Pantry Scientist YouTube channel!

-composition book: Makes a great science notebook to draw, record, and tape photos of experiments into.
-clear plastic cups to use as test tubes and beakers
-measuring spoons and cups 
-school glue (white or clear) for making Mad Scientist’s Slime
-contact lens solution for making Borax-free Slime
-gummy worms to transform into Frankenworms
-baking soda: Can be used for a number of experiments like fizzy balloons, magic potion . Or just mix with vinegar to make carbon dioxide bubbles.
-vinegar Great for fizzy balloons , alien monster eggs and magic potion.
-balloons for fizzy balloons.
-dry yeast for yeast balloons.
-white coffee filters: can be used for magic marker chromatography, in place of a paper bag for a coffee-filter volcano or making red cabbage litmus paper.
-cornstarch:Lets you play with Cornstarch Goo, a non-newtonian fluid. Here’s the video.
-marshmallows with rubber bands and prescription bottle rings you have around the house can be used to make marshmallow catapults. My kids used theirs to make their own Angry Birds game.
-Knox gelatin and beef bouillon cubes can be used to make petri plates for culturing microbes from around the house. You can also use the gelatin for cool osmosis experiments!
-food coloring Helps you learn about surface tension by making Tie Dye Milk. Here’s the video. You can also easily make colorful sugar-water gradients that illustrate liquid density!
-Mentos mints will make a Mentos geyser when combined with a 2L bottle of Diet Coke.
-drinking straws are great for NASA soda straw rockets and a carbon dioxide experiment.

To take it up a notch, throw in a copy of one of my book! You can find them on Amazon, Barnes and Noble and anywhere else books are sold! 

Happy Experimenting!