Tag: edible’

Hard Candy Stained Glass- Edible Science

 - by KitchenPantryScientist

Most clear hard candy has what scientists call a glass structure. It’s a disorganized jumble of three kinds of sugar: glucose, fructose and sucrose, which can’t assemble into organized crystals, so it remains transparent when you melt it and allow it to re-harden.

 

Hard Candy Stained Glass “STEAM Lab for Kids” Quarry Books 2018

To make stained glass for our gingerbread house windows, I adapted the crushed stained glass candy project from my book “STEAM Lab for Kids.” The challenge was figuring out how to create perfect rectangles. After some trial and error, I discovered that scoring the candy when it was still warm and soft created weak points, which allowed me to snap the candy into clean shapes once it had hardened.

Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

You’ll need:

-Jolly Ranchers, Life Savers or another clear, hard candy

-a baking sheet (spray or grease the baking sheet, if not using a silicon liner)

-a silicon liner for the baking sheet, if you have one

-a metal spatula or dough scraper

-an oven

Safety tip: Adult supervision recommended. Hot, melted candy can cause burns. Don’t touch it until it has cooled.

What to do:

  1. Pre-heat the oven to 350F.
  2. Unwrap the candy and arrange the pieces on a baking sheet so that they’re close together, but not touching.

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

  3. Bake the candy for 7 to 8 minutes, or until it has melted. 
  4. Remove the candy from the oven. Tilt the baking sheet, if needed, to fill gaps.
  5. Use the spatula to score (make lines in) the candy, creating whatever shapes/sizes you need.

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

  6. When the candy has cooled, snap it carefully along the lines you made. (See photo at the top of this post.)
  7. Eat your creations, or use them to decorate some edible architecture.

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

  8. Try crushing the candy before you melt it for different visual effects. What else could you try?

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

 

 

 

Edible Water Balloons (and popping boba)

 - by KitchenPantryScientist

Sodium alginate (Say it like you say algae!) is a substance found in the cell walls of brown algae, including seaweeds and kelp. Its rubbery, gel-like consistency may be important for the flexibility of seaweed, which gets tossed around on ocean waves.

Edible Water Balloons- KitchenPantryScientist.com

Edible Water Balloons- KitchenPantryScientist.com

Here on dry land, you can use sodium alginate to make edible balloon-like blobs that are liquid in the middle. We can thank scientists for this delicious project, since they discovered that a chemical reaction between sodium alginate and calcium causes the alginate to polymerize, or form a gel. In this experiment, the gel forms on the outside of a sodium alginate blob, where the chemical reaction is taking place. The inside of the blob remains liquid!

No heat is required for this experiment, making it safe and fun for all ages!

Sodium alginate and calcium lactate can be tricky to find at the grocery store, so you’ll probably have to order them online. But they’re not very expensive, and you’ll have lots of fun playing with them!

You’ll need:

-a blender or hand blender (parental supervision required for small children)

-1/2 tsp sodium alginate

-2 tsp calcium lactate

-flavored drink drops, like Kool-Aid or Tang (optional)

-water

-a spoon

-squeeze bottle or syringe for popping boba*

You can make these with juice, but if there is any calcium in the juice, you may end up with foam in your blender, since it may start to polymerize the sodium alginate when you blend it in. 

  1. Add 1 and 1/2 cup water (or calcium-free juice) to the blender.
  2. To the water, add 1/2 tsp. sodium alginate.
  3. Blend for about a minute, and let rest for 15 or 20 minutes, or until the bubbles are gone.
  4. If you want to add flavor, divide the sodium alginate solution into small containers and stir in the flavor, like a squirt of Kool-Aid liquid.

    Add liquid drink drops to add flavor and color (KitchenPantryScientist.com)

    Add liquid drink drops to add flavor and color (KitchenPantryScientist.com)

  5. Add 4 cups of water to a clean, clear glass bowl or container.
  6. To the water, add 2 tsp. calcium lactate and mix until completely dissolved. This is your calcium lactate “bath.”
  7. To make edible water balloons, fill a spoon, like a tablespoon, with the sodium alginate solution, and slowly lower it down into the calcium lactate bath. You’ll see a gel begin to form. Gently turn the spoon so the sodium alginate falls off the spoon and into the calcium lactate.

    Gently turn the spoon upside down.

    Gently turn the spoon upside down.

  8. After about 30 seconds, you’ll be able to see a pale blob in the water. Leave it there for three or four minutes. You can make several edible balloons at once.

    IMG_5400

    After a few minutes, you’ll see a pale blob.

  9. When the blobs are ready, use a spoon to carefully remove them from the bath and put them in a clean bowl of water for a few seconds to rinse them off.

    Rinse balloons off in water.

    Rinse balloons off in water.

  10. Put your edible balloons on a plate and taste them. What do you think?
  11. *To make popping boba, add the fruit-flavored sodium alginate to a squeeze bottle or syringe. Drip the flavored sodium alginate into the calcium lactate as fairly large drops. It may take some practice to get uniform drops of the size you desire. When they’re solid enough to remove from the calcium lactate, rinse them gently and add them to your favorite drink. A small sieve works well for rinsing.

Now that you know how to polymerize sodium alginate with calcium, what else could you try? Can you make a foam in the blender? Can you make gummy worms in the bath using the rest of your sodium alginate solution? Can you invent something entirely new??? Try it!

Thank you to Andrew Schloss’s book Amazing (Mostly) Edible Science for the experiment inspiration!  Adding the Kool-Aid and Tang drops to add a little flavor and color was our idea! (This blog post was first published on KitchenPantryScientist.com on May 3rd, 2016 and revised to add popping boba July 24th, 2018.)

Edible Egg Marbling (with Food Coloring and Whipped Cream)

 - by KitchenPantryScientist

Want to take egg-dying up a notch the easy way? Marbling eggs using whipped cream and food coloring is a great project for little ones and the results are downright gorgeous!

edible egg marbling

KitchenPantryScientist.com

Hint: Wear disposable glove to prevent your fingers from getting stained.

You’ll need:

-hard boiled eggs

-vinegar

-a shallow container

-cool whip or whipped cream

-food coloring (neon, if you can get it)

-a chopstick or toothpick

1. Soak eggs in vinegar for 5 minutes.

IMG_5962

You’ll see carbon dioxide bubbles forming on the eggs as the vinegar reacts with the calcium carbonate in the egg shells.

2. Spread and smooth a layer of whipped cream across the bottom of the container and drip food coloring all over the whipped cream.

IMG_5963
3. Swirl the drips into patterns using a toothpick or chopstick.

IMG_5967

KitchenPantryScientist.com

4. Remove eggs from vinegar, blot them with a paper towel and roll them through the food coloring. Put them on a plate to dry.

KitchenPantryScientist.com

KitchenPantryScientist.com

5. When the eggs are dry, wipe the excess whipped cream and color from the shells.

IMG_5978

KitchenPantryScientist.com

The science behind the fun: Food coloring is an acid dye, so the vinegar (acetic acid) helps it form chemical bonds with the egg shell, dying the egg.

Edible Alien Eyeballs- A Diffusion Experiment for Halloween

 - by KitchenPantryScientist

Molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules in a process called  DIFFUSION. When the molecules are evenly spread throughout the space, they have achieved  EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids.
IMG_4968
You can watch food coloring molecules diffuse into gelatin (a colloid) when you do this fun, edible Halloween experiment.

Dissolve two 3oz packages of lemon Jell-O in 1 and 1/4 cups of boiling water. (Adult supervision required.) Allow it to cool briefly, and pour it into 2 ice-cube trays with oval-shaped holes. Refrigerate until firm.

Dissolve one 6oz package of Berry Blue Jell-O in 1 and 1/4 cups of boiling water. Cool briefly.

Using the end of a potato peeler or a strawberry corer to hollow out a circle in the middle of each yellow Jell-O “eyeball.” Carve the circle about halfway to the bottom of the gelatin. Use a toothpick or skewer to remove the Jell-O.

IMG_4925

Fill the hollow with melted blue gelatin and return to the refrigerator to harden. The blue Jell-O will be the pupil of the eye.

Set ice cube trays containing Jell-O in a casserole dish of hot tap water for 1-2 minutes. Turn upside down in another dish to un-mold and then move your eyeballs to another serving dish.

IMG_4944

Use a straw to add Kool-Aid liquid (like Cherry) to the center of each eyeball. Then, use a sharp skewer to draw lines out from the center.

IMG_4952

Cover with plastic wrap and let sit for a few hours so the Kool-Aid will start to diffuse.

Add a second color Kool-Aid drops (Like Blue Raspberry) to the center of the eye and repeat.

 

Cover and refrigerate until ready to serve. The Kool-Aid colors will continue to diffuse into the eyeballs!

IMG_4970

 

Enjoy!