Tag: chemistry’

Chemistry for Kids book

 - by KitchenPantryScientist

Here’s some fun footage of kids doing projects from Kitchen Science Lab for Kids. I miss those mask-less photo shoots! (Book Photos by Amber Procaccini and illustrations by @kellyannedalton.) If you’ve got a young scientist on your list, “CHEMISTRY FOR KIDS -Homemade Science Experiments and Activities Inspired by Awesome Chemists, Past and Present” is available everywhere books are sold!

Hot Chocolate Bombs (Holiday Science)

 - by KitchenPantryScientist

Here’s a video on how to make hot chocolate bombs. My tips below.

  1. Buy thin silicone molds like these that make it easy to pop chocolate half-domes out.
  2. Melt chocolate (chips or a chopped chocolate bar) in the microwave at 15 second intervals until almost all of it is melted, but there is still some solid chocolate. Stir until the last of the solid chocolate melts. (If you get the chocolate too hot, it ruins the crystal structure of the fat in the cocoa butter and it won’t re-harden very well.)
  3. Use a spoon or brush to coat the sides of the mold. Put in the freezer (or outdoors if it’s below freezing) for five minutes.
  4. Add a second layer of chocolate to cover any holes and thicken the structure. Put outside for five more minutes and then carefully remove the chocolate.
  5. Put hot chocolate mix and marshmallows in half of a dome.
  6. Add melted chocolate to a small plastic bag, cut the corner off and pipe the chocolate around the edge of the filled half-dome.
  7. Put a second half-dome on top, smooth the seam with your finger and allow the chocolate to hard.
  8. Decorate by piping more chocolate on top and adding crushed candy or sprinkles.
  9. Add to hot milk, stir and enjoy!

Hard Candy Stained Glass- Edible Science

 - by KitchenPantryScientist

Most clear hard candy has what scientists call a glass structure. It’s a disorganized jumble of three kinds of sugar: glucose, fructose and sucrose, which can’t assemble into organized crystals, so it remains transparent when you melt it and allow it to re-harden.

 

Hard Candy Stained Glass “STEAM Lab for Kids” Quarry Books 2018

To make stained glass for our gingerbread house windows, I adapted the crushed stained glass candy project from my book “STEAM Lab for Kids.” The challenge was figuring out how to create perfect rectangles. After some trial and error, I discovered that scoring the candy when it was still warm and soft created weak points, which allowed me to snap the candy into clean shapes once it had hardened.

Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

You’ll need:

-Jolly Ranchers, Life Savers or another clear, hard candy

-a baking sheet (spray or grease the baking sheet, if not using a silicon liner)

-a silicon liner for the baking sheet, if you have one

-a metal spatula or dough scraper

-an oven

Safety tip: Adult supervision recommended. Hot, melted candy can cause burns. Don’t touch it until it has cooled.

What to do:

  1. Pre-heat the oven to 350F.
  2. Unwrap the candy and arrange the pieces on a baking sheet so that they’re close together, but not touching.

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

  3. Bake the candy for 7 to 8 minutes, or until it has melted. 
  4. Remove the candy from the oven. Tilt the baking sheet, if needed, to fill gaps.
  5. Use the spatula to score (make lines in) the candy, creating whatever shapes/sizes you need.

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

  6. When the candy has cooled, snap it carefully along the lines you made. (See photo at the top of this post.)
  7. Eat your creations, or use them to decorate some edible architecture.

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

  8. Try crushing the candy before you melt it for different visual effects. What else could you try?

    Stained Glass Candy “STEAM Lab for Kids” Quarry Books 2018

 

 

 

Halloween Candy Lava Lamps (Use chemistry to test whether candy contains citric acid.)

 - by KitchenPantryScientist

Make mini “lava lamps” from water, baking soda and oil to test whether candy contains citric acid!

The science behind the fun: Oil floats on water because it is less dense. When citric acid in candy combines with baking soda, a chemical reaction occurs which produces carbon dioxide gas bubbles. As the bubbles move up through the oil, they carry water and food coloring with them. Once the gas escapes into the air, gravity pulls the water and food coloring back down through the oil.to the bottom of the container.

Essential Oils and Chemical Precipitation from “Chemistry for Kids”

 - by KitchenPantryScientist

Here’s a segment I did for TV last week, featuring of projects from Chemistry for Kids, which pairs the story of 25 scientists with hands-on projects related to their work! In the clip, I demonstrate how to collect essential oils from flowers, citrus or herbs using a crock pot and how to do a precipitation experiment similar to one Marie Curie used to extract radium from mining waste.

Chemistry for Kids: Scientist Stories and Hand-On Projects Related to Their Work

 - by KitchenPantryScientist

I’m thrilled that my newest kids’ science book will be out this Spring and is available for pre-order wherever books are sold, including your favorite neighborhood bookstore, Barnes and Noble and Amazon!

Here’s the cover, and sneak peek of a photos from a few of the projects! The book features gorgeous illustrations by Kelly Anne Dalton and beautiful photographs by Amber Procaccini.

Marie Curie Experiment (Elemental Precipitation)
Chemistry for Kids- Quarry Books
Svante Arhennius Experiment (Reaction Rates)
Chemistry for Kids- Quarry Books
Joseph Priestly Experiment (Carbonation)
Chemistry for Kids- Quarry Books

Tapputi-Belatikallim (Fragrance Distillation)
Chemistry for Kids- Quarry Books

Edith Flanigen Experiment (Molecular Sieves)
Chemistry for Kids- Quarry Books

I’ll be demonstrating several of the projects on television over the next few months and will post the clips here for you to check out!

Kitchen Science Lab for Kids: Edible Edition

 - by KitchenPantryScientist

Seven weeks from today, my new book “Kitchen Science Lab for Kids: Edible Edition” hits shelves everywhere books are sold, and there are some great pre-order sales going on now! Kitchen Science Lab for Kids, Edible Edition gives you 52 delicious ideas for exploring food science in your own kitchen by making everything from healthy homemade snacks to scrumptious main dishes and mind-boggling desserts.

Here’s a sneak peek into the book….

When you step into your kitchen to cook or bake, you put science to work. Physics and chemistry come into play each time you simmer, steam, bake, freeze, boil, puree, saute, or ferment food.

Make boba smoothies to learn about tapioca science. (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Use steam pressure to make delicious popovers expand like balloons! (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Homemade pesto is a tasty emulsion! (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Simple freezer sorbet is a mouth-watering way to explore crystal formation in sweet syrups! (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Knowing something about the physics, biology, and chemistry of food will give you the basic tools to be the best chef you can be. The rest is up to you!

Dying Yarn (or Your Hair) using Kool-Aid

 - by KitchenPantryScientist

You can dye a rainbow of streaks in your hair using Kool-Aid drink mix. Practice on yarn first to perfect your technique!

Sheep’s wool and human hair are both made up of proteins called keratins, which can be dyed using chemical mixtures called acid dyes. These dyes are used to dye wool and alpaca, and some of the non-toxic ones can be used to dye human hair. Despite their name, they don’t actually contain acids. Instead, they require mild acid, such as citric acid or vinegar to be present in order for them to attach to proteins.

Kool-Aid drink mixes contain acid dyes that are perfect for dying keratin, and the color will wash away in a few washes. The mixes usually contain citric acid, but it helps to add vinegar as well to create an acidic solution. Colors will be most visible on lighter-toned hair or hair that has been chemically lightened, but you can dye dark hair too, by using more Kool-Aid mix.

Remember, Kool-Aid stains skin, fabric and other surfaces!

To dye yarn you’ll need:

100%  wool yarn (white or cream, not cotton or synthetic fiber)

Kool-Aid drink mixes (powdered or liquid concentrate)

vinegar

scissors

  1. Cut yarn into desired length and tie into bundles.

2. Soak yarn in warm water for 30 minutes.

3. In small containers, add enough vinegar to cover yarn and enough Kool-Aid to create intense colors.

4. After 30 minutes, put the wet yarn in the vinegar.

5. Soak for 30 minutes to overnight.

6. Remove yarn from dye, rinse well with cold water and hang to dry.

7. To make multi-colored yarn, soak yarn in vinegar and then squirt dye directly onto yarn. Let sit, rinse out and dry.

 

To dye streaks or the tips of your hair, shampoo and dry your hair. Skip the conditioner and put on an old shirt that can be stained.

Add the desired shade of Kool-Aid to vinegar in a bowl and soak the portions of your hair that you want dyed in the Kool-Aid mix for half an hour or so.

Rinse ends several times and dry. Remember that if your hair gets wet, it may transfer color to your clothes!