Edible Science: Ice Cream Games

 - by KitchenPantryScientist
Ice Cream Keep Away (Outdoor Science Lab for Kids-Quarry Book 2016)

Ice Cream Keep Away (Outdoor Science Lab for Kids-Quarry Book 2016)

Brrr. It’s really cold here in Minnesota. Perfect for making ice lanterns by filling balloons with water and setting them outside the back door. I had a great time talking ice lanterns and homemade ice cream (an edible experiment in my new book) on WCCO MidMorning this AM. As promised, here’s the recipe for “Ice Cream Keep Away.” After all, it’s never to cold to eat ice cream.

Ice Cream Keep Away (from Outdoor Science Lab for Kids- Quarry Books 2015)

Materials

  • – 2 cups milk
  • – 2 cups heavy cream
  • – ½ cup sugar
  • –   2 Tbs. vanilla
  • –  quart or pint-sized plastic zipper freezer bags
  • –  gallon-sized zipper freezer bags
  • – 2 cups of rock salt or table salt
  •  -large bag of ice
  • -dish towels

Safety Tips and Hints

  • If the ice cream isn’t frozen when you check it, add more ice and salt to the outer bag and continue to throw it around for another five or ten minutes.
  • You make enough ice cream mix in this lab to make 4 ice cream footballs at a time, so there’s plenty of ice cream and fun to go around!

Step 1:  Make an ice cream mixture by combining 2 cups milk, 2 cups cream, ½ cup sugar and 2 Tbs. vanilla to a bowl and mix well.

Step 2.   Add one cup of ice cream mixture to a quart or pint-sized freezer bag, squeeze out some of the air and zip it closed.

Step 3.    Place the small bag of ice cream mixture in a second small bag, squeeze out the air and zip it closed as well.

Step 4.     Place the double-bagged ice cream mixture into a gallon-sized bag and fill the larger back with ice.

Step 5.    Pour a generous ½ cup of salt over the ice in the bag and zip the bag shut.

Step 6.    Wrap a dish towel around the bag of ice and place it in a second gallon bag. Zip the outer bag closed.

Step 7.   Play catch with the bag of ice and ice cream for ten or fifteen minutes.

Step 8.   Remove the bag of ice cream mix from the outer bag and enjoy your frozen treat.

Enjoy eating your frozen experiment! (From Outdoor Science Lab for Kids-Quarry Books 2016)

Enjoy eating your frozen experiment! (From Outdoor Science Lab for Kids-Quarry Books 2016)

The Science Behind the Fun:

 Making ice cream is a lesson in heat transfer and crystallization.

Water is the solid form of ice. When you add salt to ice, it lowers the freezing temperature of the water, melting it and allowing it to remain a liquid far below water’s normal freezing temperature of 32 degrees F (O degrees Celsius.)

 In this lab, adding salt melts the ice, making a really, really cold ice-salt-water mix. The icy salt water pulls, or transfers, heat out of the ice cream mixture, freezing the water molecules in the milk and cream into ice crystals.

Depending on how fast ice cream freezes and what ingredients it contains, the ice crystals will be different sizes. If you freeze the mixture very fast, you will probably get big ice crystals that make the ice cream grainy. Ingredients like gelatin encourage smaller crystals to form, making smoother frozen treats.  Adding emulsifiers like eggs to the mix helps the fats and water combine better, creating ice cream that thaws more slowly.  

  • Try added less salt to the ice to freeze the ice cream more slowly. How does this change the texture of the final product?
  • What happens if you add a Tbs. of gelatin to the mix?

Electroscopes and Static Electricity

 - by KitchenPantryScientist

Repost from Dec.19th, 2010 (Photos from Kitchen Science Lab for Kids, Quarry Books 2014)

Have you ever gotten a shock from a doorknob after shuffling across a carpet? The term “static electricity” refers to the build-up of a positive or negative electrical charge on the surface of an object.  In this case, the charged object is your body.  You feel an electric shock as the charge you’ve collected from the carpet jumps from your hand to the metal doorknob.

CZ1A9359p

Tiny particles called electrons have negative charges and can jump from object to object. When you rub a balloon on your hair, or a comb through it, many of these electrons are stripped from your hair and move to the balloon or comb giving it a negative charge (and often leaving your hair all positively charged and standing up as the strands try to avoid each other.)

The negatively charged balloon or comb then makes a great tool for making electrons jump around!

You can easily make a contraption called an electroscope using:

-a jar

-some thin aluminum foil or mylar (the shiny stuff balloons and candy wrappers are made from)

-cardboard

-a nail

-tape

-a balloon or comb.

CZ1A9345p

from Kitchen Science Lab for Kids (Quarry Books 2014)

  1. Cut the cardboard to fit over the mouth of the jar, poke the nail through the cardboard, tape on two long, thin strips of foil or mylar (see photo) and place the whole thing in the jar so the foil strips hang down, touching each other.

 

CZ1A9351p

Electroscope from Kitchen Science Lab for Kids (Quarry Books 2014)

 

2. Charge your balloon or comb by rubbing it on your hair or clothing to give it a negative charge.  Bring the charged object close to the nail head.  You don’t      even have to touch it!

From Kitchen Science Lab for Kids (Quarry Books 2014)

From Kitchen Science Lab for Kids (Quarry Books 2014)

 

What happened? Some negatively-charged electrons jump from the comb to the nail and into the strips of foil.  The negative charge on the comb will push electrons (which are also negatively charged) down to the foil/mylar and give both strips a negative charge. The two strips try to move away from one another as the like charges repelled each other.

What happens when you make the strips out of different materials like paper?  Are there other charged objects you can use to make your foil strips “dance”?

You can also bend a thin stream of water from the faucet by holding your charged comb next to it.  The water is uncharged and is pulled toward the negative charge of the comb.

Try making small pieces of tissue paper float or dance by holding a charged comb or balloon next to them!  We filled an empty soda bottle with tiny pieces of foil and made them jump around with a charged comb held close to the bottle.

 

14 Freaky Halloween Science Projects for Kids

 - by KitchenPantryScientist

Turn your kitchen table into the coolest mad science lab in the neighborhood. Click on the project name for a link to instructions and the “Science Behind the Fun.” Several of these projects can be found in my book “Kitchen Science Lab for Kids,” if you’re looking for a gift for your young mad scientist!

Click on

1. Frankenworms– Bring gummy worms to “life” using baking soda and vinegar.

2. Alien Monster Eggs– Make creepy, squishy monster eggs.

3. Oozing Monster Heads– Combine science and art to create Halloween fun.

4. Bag of Blood– Amaze your friends with this magical science trick.

5. Vampire Rock Candy

Vampire Rock Candy (kitchenpantryscientist.com)

 

 

 

 

 

 

 

 

 

 

 

6. Cornstarch Goo

7. Jell-O Eyeballs

Jell-O Eyeballs
kitchenpantryscientist.com

 

 

 

 

 

 

 

 

 

 

 

 

8. Vegetable Vampires

Vegetable Vampires kitchenpantryscientist.com

 

 

 

 

 

 

 

 

 

 

 

 

9. Magic Potion– Make a color-changing, foaming potion using red cabbage and water.

10. Halloween Soda Explosion– Halloweenize the classic Diet Coke and Mentos explosion

11. Foaming Alien Blood– Bring the X-Files to your kitchen with this creepy green fake blood

12. Mad Scientist’s Green Slime– Because everyone loves slime

13. Homemade Fake Blood– It’s simple to make non-toxic fake blood in your kitchen.

edible fake blood

 

 

 

 

 

 

 

 

 

 

 

14. Fizzy Balloons– Draw scary faces on balloons and blow them up using baking soda and vinegar.

Catching Bugs: 5 Science Projects from Outdoor Science Lab for Kids

 - by KitchenPantryScientist


Our planet is buzzing with life, and over 90% of all the animals on Earth are invertebrates, including worms, insects and arachnids. From Earthworms to sow bugs and butterflies, your neighborhood is teeming with amazing creatures.

From Outdoor Science Lab for Kids (Quarry Books 2016)

Below are five science projects from my book Outdoor Science Lab for Kids ! Click on the experiments below for instructions, or order your copy (wherever books are sold) to find step-by-step instructions, how-to photos, science explanations and more outdoor science experiments!

1.Find some Monarch eggs or caterpillars to raise into butterflies!

2. Make a pit trap to discover which invertebrates are living in your neck of the woods.

3. Assemble a homemade sweep net from wire and a pillowcase to capture insects and arthropods.

4. Use mustard powder dissolved in water to bring Earthworms wriggling out of the dirt so that you can study them.

5. Make a bug house to discover what environment isopods (pill bugs and sow bugs) prefer.

What did you discover?

Caterpillar Cam

 - by KitchenPantryScientist

It’s Monarch season!

from Outdoor Science Lab for Kids (Quarry Books)

Go find some caterpillars, gather some Milkweed and watch an incredible transformation. The second video in this post tells you how to spot Monarch eggs and caterpillars and how to raise them into butterflies!

Here’s a short video on how to find and raise caterpillars, via my new book, Outdoor Science Lab for Kids.

Soapy Science: Giant Bubbles

 - by KitchenPantryScientist

From surface tension to evaporation, science come into play every time you blow a bubble. Here’s some bubble science, along with a recipe for making giant bubbles from my book Outdoor Science Lab for Kids!

IMG_4669

Water molecules like to stick to each other , and scientists call this sticky, elastic tendency  “surface tension.” Soap molecules, have a hydrophobic (water-hating) end and (hydrophilic) a water-loving end and can lower the surface tension of water. When you blow a bubble, you create a thin film of water molecules sandwiched between two layers of soap  molecules, with their water-loving ends pointing toward the water, and their water-hating ends pointing out into the air.

As you might guess, the air pressure inside the elastic soapy sandwich layers of a bubble is slightly higher than the air pressure outside the bubble. Bubbles strive to be round, since the forces of surface tension rearrange their molecular structure to make them have the least amount of surface area possible, and of all three dimensional shapes, a sphere has the lowest surface area. Other forces, like your moving breath or a breeze can affect the shape of bubbles as well.

The thickness of the water/soap molecule is always changing slightly as the water layer evaporates, and light is hitting the soap layers from many angles, causing light waves to bounce around and interfere with each other, giving the bubble a multitude of colors.

Try making these giant bubbles at home this summer! They’re a blast! (It works best a day when it’s not too windy, and bubbles love humid days!)

To make your own giant bubble wand, you’ll need:

-Around 54 inches of cotton kitchen twine

-two sticks 1-3 feet long

-a metal washer

1. Tie string to the end of one stick.

2. Put a washer on the string and tie it to the end of the other stick so the washer is hanging in-between on around 36 inches of string. (See photo.) Tie remaining 18 inches of string to the end of the first stick. See photo!

This bubble wand is a little longer than 18 inches on a side.

This bubble wand is a little longer than 18 inches on a side.

For the bubbles:

-6 cups distilled or purified water

-1/2 cup cornstarch

-1 Tbs. baking powder

-1 Tbs. glycerine (Optional. Available at most pharmacies.)

-1/2 cup blue Dawn. The type of detergent can literally make or break your giant bubbles. Dawn Ultra (not concentrated) or Dawn Pro  are highly recommended. We used Dawn Ultra, which is available at Target.

1. Mix water and cornstarch. Add remaining ingredients and mix well without whipping up tiny bubbles. Use immediately, or stir again and use after an hour or so.

2. With the two sticks parallel and together, dip bubble wand into mixture, immersing all the string completely.

IMG_4667

3. Pull the string up out of the bubble mix and pull them apart slowly so that you form a string triangle with bubble in the middle.

IMG_4664

4. Move the wands or  blow bubbles with your breath. You can “close” the bubbles by moving the sticks together to close the gap between strings.

IMG_4668

What else could you try?

-Make another wand with longer or shorter string. How does it affect your bubbles?

-Try different recipes to see if you can improve the bubbles. Do other dish soaps work as well?

-Can you add scent to the bubbles, like vanilla or peppermint, or will it interfere with the surface tension?

-Can you figure out how to make a bubble inside another bubble?

Kitchen Science Lab for Kids: Edible Edition

 - by KitchenPantryScientist

Seven weeks from today, my new book “Kitchen Science Lab for Kids: Edible Edition” hits shelves everywhere books are sold, and there are some great pre-order sales going on now! Kitchen Science Lab for Kids, Edible Edition gives you 52 delicious ideas for exploring food science in your own kitchen by making everything from healthy homemade snacks to scrumptious main dishes and mind-boggling desserts.

Here’s a sneak peek into the book….

When you step into your kitchen to cook or bake, you put science to work. Physics and chemistry come into play each time you simmer, steam, bake, freeze, boil, puree, saute, or ferment food.

Make boba smoothies to learn about tapioca science. (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Use steam pressure to make delicious popovers expand like balloons! (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Homemade pesto is a tasty emulsion! (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Simple freezer sorbet is a mouth-watering way to explore crystal formation in sweet syrups! (Image from Kitchen Science Lab for Kids: Edible Edition 2019)

Knowing something about the physics, biology, and chemistry of food will give you the basic tools to be the best chef you can be. The rest is up to you!

Basketball Science for the Final Four

 - by KitchenPantryScientist

Love basketball? Think you’re pretty good? Try taping some coins to a basketball, or covering one eye and shooting the ball. The coins change the ball’s center of mass, making it harder to shoot, and covering one eye messes with your depth perception! Try it!

I had fun thinking up these new basketball experiments that we tested on TV this week. Can you come up with one of your own? What could you try?

Olive Oil Egg Marbling and Epsom Salt Crystal Egg Geodes

 - by KitchenPantryScientist

It’s simple to make gorgeous marbled eggs using olive oil marbling. Simply dye your eggs with food coloring and then marble them with a darker color. (Epsom Salt Egg Geode instructions are at the bottom of this post.)

Oil-Marbled Eggs

KitchenPantryScientist.com

Hint: Wear gloves to avoid staining your fingers.

You’ll need:

-2 cups of warm water in a bowl

-hard boiled eggs

-olive oil

-vinegar

-food coloring (We used  Wilton Color Right food coloring: 2 drops blue mixed with one drop of yellow in about a cup of water to make robin’s egg colors, and brown for marbling.)

IMG_5986

1. Make base dye by adding a few Tbs. vinegar to two cups of water. To this, add a few drops of food coloring. Lighter colors work best for the base.

2. Dye the hard boiled eggs in the base color until they are the desired shade. Let them dry.

3. To a small bowl, add 1/2 cup water, a Tbs. of vinegar, darker food coloring, and 1/2 tsp olive oil. Add more oil if you want less dark color when you marble. Oil shouldn’t cover the entire surface.

IMG_5989

4. Swirl the oil with a toothpick or spoon and lower your egg into the water/oil mixture, swirling and spinning it. When you like the results, take it out and let it dry.

IMG_5991

5.When the egg is dry, remove the excess oil with a paper towel.

The science behind the fun: Food coloring is an acid dye, so the vinegar (acetic acid) helps it bond to the egg shell. Oil is less dense than water and floats on top. When you put the egg in the oil-colored water mixture, the oil coats part of the egg, preventing it from being stained.

Epsom Salt Crystal Egg Geodes:

Have an adult cut a raw egg in half lengthwise, using a serrated knife. Wash the shell and dry it. Dye if desired.

Use a glue gun or school glue to coat the inside of the egg. Sprinkle in Epsom salt crystals and allow to harden or dry. 

(Warning: Hot liquids require adult supervision.) To make the Epsom Salt crystals, dissolve 3 cups of Epsom salts in 2 cups of water by heating and stirring until no more crystals are visible. This creates a supersaturated solution. Allow the solution to cool slightly. Fill each half eggshell with Epsom salt solution. When long, needle-like crystals have formed, dump out the excess liquid and break the thin layer of crystals on top to reveal the ones in the shell.