Category:Uncategorized’

Olive Oil Egg Marbling and Epsom Salt Crystal Egg Geodes

 - by KitchenPantryScientist

It’s simple to make gorgeous marbled eggs using olive oil marbling. Simply dye your eggs with food coloring and then marble them with a darker color. (Epsom Salt Egg Geode instructions are at the bottom of this post.)

Oil-Marbled Eggs

KitchenPantryScientist.com

Hint: Wear gloves to avoid staining your fingers.

You’ll need:

-2 cups of warm water in a bowl

-hard boiled eggs

-olive oil

-vinegar

-food coloring (We used  Wilton Color Right food coloring: 2 drops blue mixed with one drop of yellow in about a cup of water to make robin’s egg colors, and brown for marbling.)

IMG_5986

1. Make base dye by adding a few Tbs. vinegar to two cups of water. To this, add a few drops of food coloring. Lighter colors work best for the base.

2. Dye the hard boiled eggs in the base color until they are the desired shade. Let them dry.

3. To a small bowl, add 1/2 cup water, a Tbs. of vinegar, darker food coloring, and 1/2 tsp olive oil. Add more oil if you want less dark color when you marble. Oil shouldn’t cover the entire surface.

IMG_5989

4. Swirl the oil with a toothpick or spoon and lower your egg into the water/oil mixture, swirling and spinning it. When you like the results, take it out and let it dry.

IMG_5991

5.When the egg is dry, remove the excess oil with a paper towel.

The science behind the fun: Food coloring is an acid dye, so the vinegar (acetic acid) helps it bond to the egg shell. Oil is less dense than water and floats on top. When you put the egg in the oil-colored water mixture, the oil coats part of the egg, preventing it from being stained.

Epsom Salt Crystal Egg Geodes:

Have an adult cut a raw egg in half lengthwise, using a serrated knife. Wash the shell and dry it. Dye if desired.

Use a glue gun or school glue to coat the inside of the egg. Sprinkle in Epsom salt crystals and allow to harden or dry. 

(Warning: Hot liquids require adult supervision.) To make the Epsom Salt crystals, dissolve 3 cups of Epsom salts in 2 cups of water by heating and stirring until no more crystals are visible. This creates a supersaturated solution. Allow the solution to cool slightly. Fill each half eggshell with Epsom salt solution. When long, needle-like crystals have formed, dump out the excess liquid and break the thin layer of crystals on top to reveal the ones in the shell.  

 

Crafty Microbe Zoo

 - by KitchenPantryScientist

It’s fun to make model microbes using sculpting clay and play dough! Put them in test tubes or other small clear containers glued to a clear frame to create a microbe zoo.

Bacteria can be shaped as spheres, rods and spirals. Some types of bacteria exist as single cells, but others form chains or clump together like grapes. Viruses are smaller than bacteria and come in lots of amazing, geometrical shapes too. Certain complex viruses look a lot like space ships.

Microbe Zoo (KitchenPantryScientist.com)

Hang the zoo by your bathroom sink to remind everyone to wash their hands!

Thanksgiving Science: Faux Cranberries (oil spherification)

 - by KitchenPantryScientist

Spice up your holidays with delicious Faux Cranberries, using oil spherification. Because they are made using agar,which has a higher melting temperature than gelatin, faux cranberries can be suspended in melted yellow Jell-O without losing their shape. It doesn’t work to make them using real cranberry juice, because it is too acidic. 

Different recipes, same science! (Oil spherification from “STEAM Lab for Kids”-Quarry Books 2018)

To make Faux Cranberries, you’ll need:

1 package red Jell-O

 2 Tbsp. agar flakes

squeeze bottle or large syringe

Tall container filled with very cold vegetable or canola oil. 

*Adult supervision required for hot liquids.

1. Chill oil in freezer.

2. With adult supervision, make Jell-O, following the directions on the package, but don’t allow it to harden.

3. To 1 cup of red Jell-O, add 2 Tbs. agar.  Microwave and stir repeatedly until the agar or gelatin is completely dissolved.

2. Allow the Jello to cool slightly and add it to a squeeze bottle.

Drip juice through cold oil.

3. Drip the Jell-O/agar solution into a tall container of cold oil, a few drops at a time so it forms into marble-sized orbs and sinks. Allow the orbs to cool for 30 seconds or so and retrieve them with a slotted spoon or strainer. Rinse with water and repeat, re-chilling the oil as needed until you have as many orbs as you want.

4. Add faux cranberries to another batch of Jell-O before it hardens completely, or layer Jell-O and add the faux cranberries to a center layer.

The Science Behind the Fun:

Oil spherification is known to cooks as a “molecular gastronomy” technique, and takes advantage of the fact that water and oil don’t mix. Water-based droplets falling through chilled oil form into perfect spheres due to surface tension, and gelatin and agar added to the mix are colloids that solidify as they cool.

 

 

 

Back-to-School Science Ideas for Parents and Teachers

 - by KitchenPantryScientist

Hands-on science experiment books are a great way to ease kids back into creative learning!

I recently shared some of the fun, easy, inexpensive science project ideas from my two newest books, “STEAM Lab for Kids” and “Star Wars Maker Lab” with a group of teachers on Twin Cities Live. Check out the clip below to learn to make hoop gliders and grow gorgeous Epsom salt crystals!

You can find my books at your local library, or pick them up at your favorite online or bricks-and-mortar retailer!

 

Rainbow Science

 - by KitchenPantryScientist

Happy Saint Patrick’s Day! Yesterday, I demonstrated some fun rainbow science on The Jason Show. Click here to watch!

As part of the segment, I featured the “Rainbow Slime” experiment from my new book, “STEAM Lab for Kids,” which you can order from Amazon, Barnes and Noble, or your favorite online retailer. Here’s a sneak-peek at a few photos from the book.

Rainbow Slime from “STEAM Lab for Kids” by Liz Lee Heinecke

Rainbow Slime from “STEAM Lab for Kids” by Liz Lee Heinecke

Rainbow Slime from “STEAM Lab for Kids” by Liz Lee Heinecke

Seed Science: Homemade Chi Pets

 - by KitchenPantryScientist

I grew up hearing the Chi Chi Chi Chi song on TV, but our family never actually purchased a Chi Pet, so I never realized the dream of sprouting green hair from a clay animal. Until now.

Chia Creature (KitchenPantryScientist.com)

Chia Creature (KitchenPantryScientist.com)

With the emergence of chi seeds as a new health fad, it’s easy to get your hands on some chi seeds (of the sprouting variety) with a click of the mouse, or a trip to the Co-op. Chia seeds are quick-growing members of the mint family called Salivia hispanica, hailing from Central and South America where they have served as a food source for humans for well over a thousand years. And although studies have shown that they probably won’t help you lose weight, they are chock full of protein, fiber, fatty acids and anti-oxidants.

When you give these tiny seeds the signals they need to sprout: water, light, warmth and air, they grow very fast, so you should see tiny white roots poking out in a few days, soon to be followed by a shoot and leaves.

Since most people don’t have any way to fire clay in their homes, I decided to keep it simple. These homemade chia pets are basically clay (or Play-Dough) animals formed around seed starter pellets (also available online.) Add a few pre-soaked chia seeds, wait a few days and Voila! Your homemade animal will be sprouting living green hair.

You’ll need:

-2 Tbs chia (sprouting) seeds

-dirt or seed starter pellets

-clay or playdough

-a fork or toothpick

img_5806

1. Soak 2 Tbs. chia seeds in 1/2 cup water overnight. The mixture will get slimy as it sits and water is trapped by tiny fibers on the seeds to form a gel-like substance.

2. The next day, soak your seed starter pellets per the instructions on the package.

3. Create a clay or Play-Dough animal big enough to hold the expanded pellet or some dirt inside, wherever you want the green sprouts to appear.

img_5795

4. Put the dirt/seed starter pellet into to space you created and scratch the surface with a fork or toothpick.

5. Add 1/2 tsp or so of seeds to the dirt and use the fork or toothpick to mix them into the soil.

Chia Puffer Fish (KitchenPantryScientist.com)

Chia seeds sprouting in our Chia Puffer Fish! (KitchenPantryScientist.com)

6. Wait for the seeds to grow, keeping the soil damp at all times. (You can speed growth by covering your chia pet with a plastic bag to hold in heat and moisture.) Watch for roots and leaves to emerge and draw or photograph them.

Homemade Chia Pet -KitchenPantryScientist.com

Homemade Chia Pet -KitchenPantryScientist.com

“No risk is more terrifying than that taken by the first root. A lucky root will eventually find water, but its first job is to anchor an embryo and forever end its mobile phase, however passive that motility was….it assesses the light and humidity of the moment, refers to its programming and quite literally takes the plunge.” -Hope Jahren “Lab Girl”  (My favorite new book. Read it!)

 

 

 

Slime Kit: Homemade Science-y Holiday Gifts for Kids

 - by KitchenPantryScientist

Buying gifts is fine, but it’s more fun to make them. This year, we decided to make botanical gifts for the adults on our list, and slime kits for the kids.

img_2335

To make a slime kit, you’ll need:
-glue
-glitter glue (optional)
-Borax laundry detergent
-small plastic sample cups or paper cups (optional)
-food coloring
-jars with lids
-a small plastic bin or shoe box
-plastic spoons
-extra glitter (optional)

Label the jars and fill as follows:

  1. Bouncy Ball Mix (fill with glue)
  2. Slime Mix (fill with equal parts glue and water, mixed well)
  3. Borax detergent (fill with powdered detergent)
  4. Cross-Linking Solution (leave empty)
  5. optional-Sparkly Bouncy Ball mix (fill with glitter glue)
  6. optional-Sparkly Slime Mix (fill with equal parts water and glitter glue, mixed well)

Make an instruction sheet for the kit. (Print out the info below, or copy it onto a card.)

To make slime:

  1. Fill Cross-Linking Solution container with warm water. Add about 2 tsp Borax per 1/2 cup water to the container. Mix well. (Don’t worry if all the Borax doesn’t dissolve!)
  2. Add a few spoonfuls of Ball Mix or Slime Mix to a small plastic cup or paper cup.
  3. Add a drop or two of food coloring to the cup. Stir.
  4. Add 3 spoonfuls of the Cross-Linking Solution to your ball mix or slime mix and stir well.
  5. If the slime still feels too sticky, add a little more Cross-Linking Solution.
  6. Remove your completed slime from the cup.

The Science Behind the Fun:

Glue is a polymer, which is a long chain of molecules linked together, like a chemical chain.  The polymer formed by water and glue is called polyvinyl acetate.

The Borax solution is called a cross-linking substance, and it makes the glue polymer chains stick to each other. Eventually, all the chains are bound together and no more cross-linking solution can be taken up.

To finish the slime kit, fill the plastic bin with the ingredients you put together, including jars of ingredients, instructions, plastic spoons, and mixing cups (optional.)

Slime (from Kitchen Science Lab for Kids -Quarry Books)

Slime from Kitchen Science Lab for Kids (Quarry Books)

 

 

 

 

Halloween Science: Oozing Monster Heads

 - by KitchenPantryScientist

IMG_4912Combine science and art in this awesome experiment!

You’ll need 8 oz water bottles, glue, Borax detergent, baking soda and vinegar.

First, decorate full 8 oz water bottles with tape, marbles and whatever else you can find.

Then, follow these directions to make foaming slime ooze out of their heads, using a simple chemical reaction! You’ll love it!

Marbling Science

 - by KitchenPantryScientist

I’ve always wanted to try paper marbling and knew there must be some science involved. So, we gave it a go, and the results were stunning!

tempera paint marbling- kitchenpantryscientist.com

tempera paint marbling- photo by kitchenpantryscientist.com

IMG_1586[1]

paper marbled with the Innovation marbling kit (Boku-Undo Suminagashi) from DickBlick.com – photo by kitchenpantryscientist.com

We tried two methods: one with liquid starch (made from cornstarch) and tempera paint, and another with a marbling kit. Both worked well, but look very different.

The Science Behind the Fun:  Water molecules like to stick together, a property which scientists call surface tension. This property allows very thin layers of ink to float on water, mixing in beautiful patterns when you break the surface tension with detergent, a tool like a paintbrush, or movement. To marble paper, you have to use dye or paint that floats on the water where it can be easily transferred to paper. Alternately, you can make the liquid underneath more dense than the dye or paint, to help the dye float.

When transferring the ink or paint designs, it helps to use paper that’s been coated with a chemical called a mordant, that combines with substances (usually dyes) to make large molecules that stay in one place. (Iodine is another mordant, which is used to stain bacteria.)

Here’s a video of my 10YO making designs using the pre-made marbling kit…(More info at the bottom of this post.)

Since I like to do experiments using non-toxic, inexpensive ingredients most people have on hand, we first tried a method that uses cornstarch to thicken the bottom liquid layer and tempera paint as the dye. It requires pre-treatment of paper, like inexpensive watercolor paper from Target, with the mordant aluminum sulfate (alum), which you can find at your local coop or grocery store.

You’ll need:

-watercolor paper (cheap stuff from Target works just fine)

-two large, flat trays, like 9×13 pans

-2 tps. Alum (aluminum sulfate crystals)

-a sponge brush

-2 Tbs. corn starch

-eye dropper

-tempura paint (the more colors, the merrier)

-newspaper

  1. Dissolve 2 tsp alum in 3/4 cup water. Avoid inhaling powder.
  2. Mark one side of your watercolor paper with an A and use a sponge brush to apply  alum solution evenly to that side of the paper.IMG_1480[1]
  3. Let the paper dry overnight, or speed drying with a blow dryer.
  4. Make a double recipe of liquid starch by dissolving 4 Tbs. corn starch in 1/2 cup cold water. Bring 6 cups water to a boil in a sauce pan. Add the cornstarch solution to the water, stir well and boil for 1 minute. Turn the heat to low and simmer for 2 more minutes, stirring occasionally.
  5. Pour 3 cups of the hot liquid starch into one 9×13 pan and let cool.
  6. Pour 3 cups of cold water into the other pan.
  7. Prepare paint by mixing tempura paint with water until it has the consistency of half-and-half or whole milk.
  8. When starch is cool, drip paint onto the surface of the starch using an eyedropper, or something similar. Rinse dropper between colors.IMG_1503[1]
  9. Swirl paint, or use toothpicks to drag out patterns.IMG_1521[1]
  10. Carefully place your paper on the paint, alum side-down. Let it sit for a minute or two.IMG_1527[1]
  11. Carefully peel the paper off of the paint and gently place it, face up, in the water pan.  IMG_1532[1]Let it sink and move it back an forth gently to rinse off excess paint.
  12. Set the paper on a piece of newspaper to dry.IMG_1582[1]
  13. Make more marble paper in the same paint pan. When you’re ready, repeat using the rest of the cornstarch.

The Innovation marbling kit (Boku-Undo Suminagashi) from DickBlick.com pictured below includes pre-made low density dyes that you drip onto a tiny floating disc of paper in a tray of water. It’s tons of fun and yields beautiful results. I got the kit at Blick art supplies, and used the paper they recommended, which may have been pre-treated with a mordant.

IMG_1536[1]

Have fun!