Tag: kids’

Rainy Day Science for Kids

 - by KitchenPantryScientist

While you wait for the sun to come out, put away the screens and pull out some simple science! Just click on the blue experiment name for instructions and more about the science behind the fun, or click here to watch me demonstrate them on Twin Cities Live.

Fizzy Balloons are a fun way to explore chemical reactions!
IMG_6964
Have an engineering competition by making breath-propelled Straw Rockets and seeing whose will travel the farthest.
IMG_7315
Make your own Orchestraws from plastic drinking straws. (Get out the earplugs.)
_DSC9037
Or watch science turn psychedelic when you add food coloring and dish soap to dairy and make Tie Dye Milk.

Growing Alum Crystals in Eggshells

 - by KitchenPantryScientist

It only takes a spark to start a fire, and it only takes one atom to act as a seed for crystal formation. Under the right conditions, the atoms in alum will join together like puzzle pieces to form large crystals. I posted a few years ago about how to grow a large alum crystal, but this experiment is even more fun. It’s also easier for young kids, since it takes less small-motor coordination.

Alum is also called  potassium aluminum sulfate. It’s used in pickling and in found in baking powder. You can grow beautiful alum crystals at home with a few jars of alum, water and any object you don’t mind covering with glue. We made fake geodes by breaking eggs in half and washing them out, but we also encrusted a grape stem and a plastic shark.

To do this experiment, you’ll need glue, 3/4 cup alum from the spice section of the grocery store (4 or 5 small jars should do it,) water and whatever you want to coat with crystals. It takes three days to complete.

On day one, paint glue on the objects you want to grow crystals on. If you’re making “geodes”, apply a thin layer of glue to the inside of an eggshell that’s been cut in half, washed out and dried.  Then, sprinkle a little alum powder on the glue and let it dry overnight.  We heavily coated our object with alum, but might have grown larger crystals if we’d used less. Each alum particle acts as a seed for crystal growth. The closer together they are, the less room your crystals will have to grow.

On day two, dissolve 3/4 cup alum in 2 cups of water by boiling. This step requires adult supervision. Make sure all the alum dissolves (it may still look a little cloudy) and let the solution cool. This is your supersaturated alum solution.

After about 30 minutes, when the solution is cool enough to be safely handled, gently immerse your object in the alum solution.  For color, you can add a large squirt of food coloring. Let your project sit overnight to grow crystals.

On day three, gently remove your object from the alum solution and let it dry.  How does it look? Draw it or take a picture to put in your science notebook!

Crystals are geometric networks of atoms. Imagine a three dimensional chain-link fence, and you’ll get the picture. Certain crystals will only grow in certain shapes.  For example, diamonds are always cube-shaped when they form. Whether the atoms have joined to form a small diamond, or a large one, it will always be in the shape of a cube!

Some crystals, like alum, will form from supersaturated solutions, like the one you used in this experiment. A supersaturated solution is one that is forced to hold more atoms in water (or another solute) than it normally would.  You can make these solutions using heat or pressure.  Crystals can form when a supersaturated solutions encounters a “seed” atom or molecule, causing the other atoms to come out of the solution and attach to the seed.

What else could you try? Could you do the same experiment with salt, or sugar crystals? How do you think the color gets incorporated into the crystal? Do you think the food coloring disrupts the shape? Will larger crystals grow if you let your object sit in the solution longer?

You can read more about crystals and gems here.

Young Scientist Challenge

 - by KitchenPantryScientist

Can kids in middle school come up with world-changing inventions? Absolutely. 


Most 5-8th graders don’t have free access to labs full of chemicals and equipment, which is probably a good thing, but they’re armed with more curiosity and creativity than most adults. When given the opportunity and encouragement to let their imaginations run wild, kids come up with the most amazing ideas.

The Discovery Education 3M Young Scientist Challenge helps address the gap between idea and reality, and offers kids amazing incentives to come up with big ideas. The competition encourages kids in middle school to make two-minute videos about their ideas for using science, technology, math and engineering (STEM) to solve real-life problems. The videos are judged based on

  • Creativity (ingenuity and innovative thinking) (30%);
  • Scientific knowledge (30%);
  • Persuasiveness and effective communication (20%); and
  • Overall presentation (20%).

3M‘s  Innovation Page gives overviews of how their scientists are impacting our daily lives, and some of  their scientists will mentor the contest’s ten finalists, helping them envision how to take their creations from dream to reality. Ten finalists will travel to the 3M Innovation Center for the final competition.  

Want to enter? Here’s the link: http://www.youngscientistchallenge.com/enter.

SOEL_Logo_Final

It seemed like the best way to learn about how kids come up with ideas was to ask my own two middle schoolers if they’d like to enter the contest, so I asked them to think about problems that they could help solve with STEM. They were less than excited until I showed them a few of the videos from the Young Scientist Challenge website. Like me, they were blown away by what Peyton Robertson and Deepika Kurup created to win the 2012 and 2013 Young Scientist Challenge and decided, without any prodding from me, that they wanted to come up with their own ideas.

My son, who is a voracious reader of all things science, and is somewhat obsessed with meteorology, immediately knew what particular area he wanted to focus on. It took a few days, but now he’s got a great idea and is working to make a model to test.

My oldest daughter was another story. She likes science, but spends much more time thinking about acting, basketball, photography, her friends, and our German Wirehaired Pointer.  She quickly got frustrated and worried that she didn’t know enough about science to come up with a good idea. To encourage her, I asked her to think about how she could solve a health problem in animals, prevent basketball injuries, make a camera app, or solve an environmental problem. She decided to try to think of something people throw away and use it for something really great. While researching ocean trash, she came up with another idea, addressing a water pollution problem and is excited to test out her idea.

They need to get going, since the entry deadline is April 22nd, but I know they can do it, and love the ideas they’ve come up with!

If you’re on Twitter, you can follow the contest @DE3MYSC and join us for #STEMchat on Twitter April 8 from 9 – 10 PM Eastern as we talk about How to Raise America’s Top Young Scientist (this is the title earned by the winner of the DE 3M YSChallenge.)

Although I don’t usually write sponsored posts, I made an exception for this contest, since I think it’s a fantastic way to get kids excited about STEM. This post is sponsored by the Discovery Education 3M Young Scientist Challenge.

Egg Science

 - by KitchenPantryScientist

Spring is the season for eggs. You may prefer dyed eggs, deviled eggs, or even dinosaur eggs, if you live close to the Science Museum of Minnesota’s new Ultimate Dinosaur exhibit.

IMG_6679

No matter what kind of eggs you like best, you’ll love these eggsperiments that let you play with the amazing architecture of eggs, dissolve their shells and even dye them with the pigments found in your refrigerator. Just click on experiments for directions and the science behind the fun!

Dissolve eggshells with vinegar and play with osmosis when you make “Alien Monster Eggs.”

Dye eggs with spices, fruits and vegetables,

or dye them with red cabbage juice and use lemon juice and baking soda to paint them.

You can stand on a carton of eggs to test their strength.

For a fun physics experiment, throw eggs at a hanging sheet.

Make egg-eating monsters and watch atmospheric pressure push eggs up into a bottle.

Egg drops are a fun way to test your engineering prowess. 

Grow alum crystals in eggshells to create beautiful geode-like works of art. 

Finally, here’s a little more about the science of hard-boiled eggs.

_DSC5628-b

 

Holiday Break Science Experiments

 - by KitchenPantryScientist

Snow, ice, wrapping paper and free time are abundant over the holidays.  Here are a few fun experiments to fill the hours between celebrations. Click on the experiment name for directions.

Holiday Window Gellies: Kids of all ages love making these from gelatin and food coloring!
IMG_3674
Snow Science: Melt snow to see how much water and dirt it contains.
IMG_3965
Magic Ice Experiment: Lift an ice cube from a glass of water using only a string and some salt.
IMG_6268
Wrapping Paper Egg Drop: Have a contest to see who can engineer the best egg-protecting container from left-over boxes, wrappers and decorations.

Rock Candy: Grow your own sugar crystals on a stick. What happens if you add a little peppermint oil?
Rock Candy

Homemade Sticky Window Gellies (Decorative Diffusion, Floatation and Evaporation Experiment)

 - by KitchenPantryScientist

What happens when food coloring molecules move, or DIFFUSE through gelatin, the substance that makes jello jiggle?

IMG_3674

This creative science experiment that my kids and I invented lets you play with floatation physics by sprinkling glitter on melted gelatin, watch colorful dyes diffuse to create patterns and then use cookie cutters to punch out sticky window decorations.  Water will evaporate from the gelatin, leaving you with paper-thin “stained glass” shapes.

You can watch us making them on Kare11 Sunrise News by clicking here.

You’ll need

-plain, unflavored gelatin from the grocery store or Target

-food coloring

-a drinking straw

-water

-a ruler

-glitter

*You can use the recipe below for two pans around 8×12 inches, or use large, rimmed cookie sheets for your gelatin. For a single pan, cut the recipe in half.

Step 1. Add 6 packs of plain, unflavored gelatin (1 oz or 28 gm) to 4 cups of boiling water. Stir well until all the gelatin has dissolved and remove bubbles with a spoon.

Step 2. Allow gelatin to cool to a kid-safe temperature. Pour the liquid gelatin into two large pans so it’s around 1-1.5 cm deep. It doesn’t have to be exact.

Step 3. Sprinkle glitter on the gelatin in one pan.  What happens?
IMG_3623
Step 4. Allow the gelatin to harden in both pans.

Step 5. In the pan with no glitter, use a straw to create holes in the gelatin, a few cm apart, scattered across the surface. It works best to poke a straw straight into the gelatin, but not all the way to the bottom. Spin the straw and remove it. Then, use a toothpick or skewer to pull out the gelatin plug you’ve created. This will leave a perfect hole for the food coloring. Very young children may need help.
IMG_3628
Step 6. Add a drop of food coloring to each hole in the gelatin.
IMG_3640
Step 7. Let the gelatin pans sit for 24 hours. Every so often, use a ruler to measure the circle of food coloring molecules as they diffuse (move) into the gelatin around them (read about diffusion at the bottom of this post.)  How many cm per hour is the color diffusing?  Do some colors diffuse faster than others? If you put one pan in the refrigerator and an identical one at room temperature, does the food coloring diffuse at the same rate?

Step 8. When the food coloring has made colorful circles in the gelatin, use cookie cutters to cut shapes from both pans of gelatin (glitter and food coloring), carefully remove them from the pan with a spatula or your fingers, and use them to decorate a window. (Ask a parent first, since some glitter may find its way to the floor!) Don’t get frustrated if they break, since you can stick them back together on the window.
IMG_3641
Step 9. Observe your window jellies each day to see what happens when the water evaporates from the gelatin.
IMG_3688When they’re dry, peel them off the window. Are they thinner than when you started? Why? Can you re-hydrate them by soaking the dried shapes in water?
IMG_3691The Science Behind the Fun:

Imagine half a box filled with red balls and the other half filled with yellow ones.  If you set the box on something that vibrates, the balls will move around randomly, until the red and yellow balls are evenly mixed up.

Scientists call this process, when molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules DIFFUSION. When the molecules are evenly spread throughout the space, it is called EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids (semiconductors for computers are made by diffusing elements into one another.)

Think about the way pollutants move from one place to another through air, water and even soil. Or consider how bacteria are able to take up the substances they need to thrive. Your body has to transfer oxygen, carbon dioxide and water by processes involving diffusion as well.

Why does glitter float on gelatin? An object’s density and it’s shape help determine its buoyancy, or whether it will float or sink. Density is an object’s mass (loosely defined as its weight) divided by its volume (how much space it takes up.) A famous scientist named Archimedes discovered that any floating object displaces its own weight of fluid. Boats have to be designed in shapes that will displace, or push, at least as much water as they weigh in order to float.

For example, a 100 pound block of metal won’t move much water out of the way, and sinks fast since it’s denser than water. However , a 100 pound block of metal reshaped into a boat pushes more water out of the way and will float if you design it well!

What is the shape of your glitter? Does it float or sink in the gelatin?

Here’s a video I made for KidScience app that demonstrates how to make window gellies

Credit: My 11 YO daughter came up with the brilliant idea to stick this experiment on windows. I was just going to dry out the gelatin shapes to make ornaments. Kids are often way more creative than adults!

Egg-Eating Monsters

 - by KitchenPantryScientist
It’s easy to create a bottle monster that sucks up hard-boiled eggs! We demonstrated how to make these on Kare11. Click here to watch.
IMG_3492
*This experiment requires adult supervision, since it requires the use of a match or lighter.  

You’ll need:

-a glass bottle, like a juice bottle, whose neck is a little smaller than a hard-boiled egg

-small or medium-sized hard-boiled eggs, peeled

-birthday candles

-a long match or lighter

1.  Decorate your bottle to look like a monster, with the mouth of the bottle on the mouth-end of the monster

2.  Put one or two birthday candles in the wide end of a hard-boiled egg.

3. Light the candles and hold them under the inverted bottle to warm the air inside.

IMG_3495

4. Hold your bottle upside down and put the candle end of the egg up into the bottle so it forms a seal. Continue to hold the egg until the candle goes out and the egg is “pushed” into the bottle by atmospheric pressure, which is the weight of the air pushing down on the egg.

IMG_3496

What happened? 

The flame from the candle heats the air in the bottle. When the candle goes out from lack of oxygen, the remaining air in the bottle cools rapidly, decreasing the air pressure in the bottle and creating a partial vacuum.  The outside air, whose atmospheric pressure is higher, pushes the egg into the bottle as it attempts to equalize the pressure inside of the bottle.

Vegetable Vampires

 - by KitchenPantryScientist

Plants love water as much as vampires love blood. Although they don’t have long thin fangs, they’ve developed a great system for pulling water up through their trunks and stems to their highest leaves using  capillary action.

The kids and I demonstrated how to make them on Kare11 Sunrise news last week. Click here to watch.

after 24 hours of "drinking"

after 24 hours of “drinking”

Make a vegetable vampire and watch capillary action move colored water through the cabbage creature you created.

To make a leafy vampire, you’ll need:

-head of fresh napa cabbage

-2 large cups,  jars or plasticware containers  large enough to hold the base of ½ of your cabbage

-food coloring

-fruits and veggies to use as eyes and eyebrows on your monster

-toothpicks

-rubber bands or string

 First, fill your two containers ¾ of the way to the top with warm (not hot) water.

Add 10 or more drops of blue food coloring to one container and 10 or more drops of red food coloring to the other .

With a sharp knife, cut the cabbage in half vertically, from the bottom up, leaving the top 10cm or so intact, so the two pieces are still attached at the crown.  If possible, try to cut down the middle of one of the big leaves.

Use rubber bands to secure the bottoms of each side of the cabbage and make a fresh cut at the bottom, a few cm up from the old cut.

Put one half of the base of your cabbage in the red water, and the other half in the blue water.

Decorate your two “vampires” with eyes and spooky eyebrows made from olives and peppers (or whatever you have in the refrigerator.)  Secure the decorations with toothpick.

IMG_3360

Keep an eye on your cabbage to see how much colored water it’s drinking. Your vegetable vampire will have to drink for 24-48 hours for the best results.

Plants survive by drawing nutrients dissolved in water up into their stems, stalks, trunks, branches and leaves.

Capillary action is the main force that allows the movement of water up into plants. In a narrow tube, on a surface that attracts water, the attraction between the surface and water, coupled with the attraction of the water molecules to each other, pulls water up. Plants are composed of huge numbers of tube-shaped cells that take advantage of these physical forces.

In this experiment, you can see colored water being taken up, via capillary action, into your cabbage.

Imagine how high the water in giant redwoods has to travel to reach the leaves at the top.  In very tall trees, a process called transpiration helps the water overcome the forces of gravity.  Here’s a transpiration experiment you can try at home.

Halloween Science Roundup

 - by KitchenPantryScientist

Halloween Halloween brings out the kid in all of us, and there’s no better way to celebrate than with some ghoulish science experiments. Next week, I’ll be adding Vegetable Vampires and Zombie Candy to the lineup!

Here’s a list of our favorites. Just click on the name of the experiment to go to the instructions, see photos of what to do, and learn a little science.  Most have links to videos or TV segments where I demonstrate how to do the experiments.

Shocking Machine Make an electrophorus and Leyden jar to shock your friends! Here’s how to do it. We demonstrated it on Kare11 last week!
Frankenworms Gummy worms soaked in baking soda and water come to “life” when you drop them into vinegar! Click here for directions and a video.
Goblin Goo (All you need is cornstarch and water. Here’s a video on how to make the goo.  You can add a little food coloring to the water if you want, but it may stain your hands!)
Bag of Blood (If you have ziplock baggies, water, red food coloring and skewers, you can do this experiment!) Here’s the video.
Fizzy Balloon Monster Heads (After we made Goblin Goo, I demonstrated how to make Fizzy Balloon Monster heads. Click here to watch.)
Magic Potion (Bubbly, stinky Halloween fun: I made a short video on how to make magic potion. Click here to watch it.
Mad Scientist’s Green Slime (To see a TV segment where we made Mad Scientist’s Green Slime, click here!) Here’s another video.
Apple Mummies (Here’s a link to a TV segment where the kids and I demonstrated how to make Apple Mummies.  Click here.)
Alien Monster Eggs (These make a great centerpiece for a Halloween party, when you’re done playing with them.) I demonstrated how to make them on Kare 11! Click here to watch the video.
Creepy Critter Slingshots Lob Marshmallow eyeballs and spiders at a pumpkin or another target in this fun physics experiment.

Science on a Stick: Rock Candy

 - by KitchenPantryScientist

Got sugar? You can grow big, edible sugar crystals, commonly called “rock candy,” in your own kitchen.  We thought they’d make a great science experiment to demonstrate at the Minnesota State Fair, where foods on a stick hold sway.

IMG_3245

Like bricks in a wall, crystals are solids formed by repeating patterns of molecules. Instead of mortar, the atoms and molecules are connected by atomic bonds.

They can be big or small, but crystals made from the same atoms or molecules always form the same shape. Table sugar, or sucrose, is made up of a molecule composed of two sugars, glucose and fructose.  The crystals formed by sucrose are hexagonal (six-sided) prisms, slanted at the ends.

To make rock candy on a stick, you’ll need: 5 cups white granulated sugar, 2 cups water, cake pop sticks or wooden skewers, and food coloring

Seed Crystals

  1. Dip one end of cake-pop sticks or wooden skewers in water and then roll them in granulated white sugar. The sugar should cover 2-3 inches of the stick. Let them dry completely. These are the seeds for the sugar crystal growth.
  2. Boil 2 cups water and 5 cups sugar until sugar is dissolved as much as possible. It should look like syrup. This is your supersaturated sugar solution.
  3. Let syrup sit until it is no longer hot and pour into glass containers. Add food coloring and stir.
  4. When colored syrup is completely cool, set the sugary end of the sugar-seeded cake pops or skewers into the syrup and let them sit for about a week.

IMG_3177

5. Gently move the sticks around occasionally, so they don’t stick to the crystals in the bottom of the glass. If the glass container gets too full of crystals, pour the syrup into a new container and move your stick into the cleaner syrup to grow more crystals. When the rock candy is done, drain the excess syrup and let them dry. Enjoy!

sugar crystals

The science behind the candy?  A supersaturated solution is one that is forced to hold more atoms in water or another solute than it normally would. Supersaturated solutions can be made using heat or pressure.  Crystals start to form when a supersaturated solutions encounters a “seed” atom or molecule, causing the other atoms to come out of the solution and attach to the seed. In this case, the seed molecules were the sucrose molecules we dried onto the sticks.