Tag: kids’

Egg Science

 - by KitchenPantryScientist

Spring is the season for eggs. You may prefer dyed eggs, deviled eggs, or even dinosaur eggs, if you live close to the Science Museum of Minnesota’s new Ultimate Dinosaur exhibit.

IMG_6679

No matter what kind of eggs you like best, you’ll love these eggsperiments that let you play with the amazing architecture of eggs, dissolve their shells and even dye them with the pigments found in your refrigerator. Just click on experiments for directions and the science behind the fun!

Dissolve eggshells with vinegar and play with osmosis when you make “Alien Monster Eggs.”

Dye eggs with spices, fruits and vegetables,

or dye them with red cabbage juice and use lemon juice and baking soda to paint them.

You can stand on a carton of eggs to test their strength.

For a fun physics experiment, throw eggs at a hanging sheet.

Make egg-eating monsters and watch atmospheric pressure push eggs up into a bottle.

Egg drops are a fun way to test your engineering prowess. 

Grow alum crystals in eggshells to create beautiful geode-like works of art. 

Finally, here’s a little more about the science of hard-boiled eggs.

_DSC5628-b

 

Holiday Break Science Experiments

 - by KitchenPantryScientist

Snow, ice, wrapping paper and free time are abundant over the holidays.  Here are a few fun experiments to fill the hours between celebrations. Click on the experiment name for directions.

Holiday Window Gellies: Kids of all ages love making these from gelatin and food coloring!
IMG_3674
Snow Science: Melt snow to see how much water and dirt it contains.
IMG_3965
Magic Ice Experiment: Lift an ice cube from a glass of water using only a string and some salt.
IMG_6268
Wrapping Paper Egg Drop: Have a contest to see who can engineer the best egg-protecting container from left-over boxes, wrappers and decorations.

Rock Candy: Grow your own sugar crystals on a stick. What happens if you add a little peppermint oil?
Rock Candy

Homemade Sticky Window Gellies (Decorative Diffusion, Floatation and Evaporation Experiment)

 - by KitchenPantryScientist

What happens when food coloring molecules move, or DIFFUSE through gelatin, the substance that makes jello jiggle?

IMG_3674

This creative science experiment that my kids and I invented lets you play with floatation physics by sprinkling glitter on melted gelatin, watch colorful dyes diffuse to create patterns and then use cookie cutters to punch out sticky window decorations.  Water will evaporate from the gelatin, leaving you with paper-thin “stained glass” shapes.

You can watch us making them on Kare11 Sunrise News by clicking here.

You’ll need

-plain, unflavored gelatin from the grocery store or Target

-food coloring

-a drinking straw

-water

-a ruler

-glitter

*You can use the recipe below for two pans around 8×12 inches, or use large, rimmed cookie sheets for your gelatin. For a single pan, cut the recipe in half.

Step 1. Add 6 packs of plain, unflavored gelatin (1 oz or 28 gm) to 4 cups of boiling water. Stir well until all the gelatin has dissolved and remove bubbles with a spoon.

Step 2. Allow gelatin to cool to a kid-safe temperature. Pour the liquid gelatin into two large pans so it’s around 1-1.5 cm deep. It doesn’t have to be exact.

Step 3. Sprinkle glitter on the gelatin in one pan.  What happens?
IMG_3623
Step 4. Allow the gelatin to harden in both pans.

Step 5. In the pan with no glitter, use a straw to create holes in the gelatin, a few cm apart, scattered across the surface. It works best to poke a straw straight into the gelatin, but not all the way to the bottom. Spin the straw and remove it. Then, use a toothpick or skewer to pull out the gelatin plug you’ve created. This will leave a perfect hole for the food coloring. Very young children may need help.
IMG_3628
Step 6. Add a drop of food coloring to each hole in the gelatin.
IMG_3640
Step 7. Let the gelatin pans sit for 24 hours. Every so often, use a ruler to measure the circle of food coloring molecules as they diffuse (move) into the gelatin around them (read about diffusion at the bottom of this post.)  How many cm per hour is the color diffusing?  Do some colors diffuse faster than others? If you put one pan in the refrigerator and an identical one at room temperature, does the food coloring diffuse at the same rate?

Step 8. When the food coloring has made colorful circles in the gelatin, use cookie cutters to cut shapes from both pans of gelatin (glitter and food coloring), carefully remove them from the pan with a spatula or your fingers, and use them to decorate a window. (Ask a parent first, since some glitter may find its way to the floor!) Don’t get frustrated if they break, since you can stick them back together on the window.
IMG_3641
Step 9. Observe your window jellies each day to see what happens when the water evaporates from the gelatin.
IMG_3688When they’re dry, peel them off the window. Are they thinner than when you started? Why? Can you re-hydrate them by soaking the dried shapes in water?
IMG_3691The Science Behind the Fun:

Imagine half a box filled with red balls and the other half filled with yellow ones.  If you set the box on something that vibrates, the balls will move around randomly, until the red and yellow balls are evenly mixed up.

Scientists call this process, when molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules DIFFUSION. When the molecules are evenly spread throughout the space, it is called EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids (semiconductors for computers are made by diffusing elements into one another.)

Think about the way pollutants move from one place to another through air, water and even soil. Or consider how bacteria are able to take up the substances they need to thrive. Your body has to transfer oxygen, carbon dioxide and water by processes involving diffusion as well.

Why does glitter float on gelatin? An object’s density and it’s shape help determine its buoyancy, or whether it will float or sink. Density is an object’s mass (loosely defined as its weight) divided by its volume (how much space it takes up.) A famous scientist named Archimedes discovered that any floating object displaces its own weight of fluid. Boats have to be designed in shapes that will displace, or push, at least as much water as they weigh in order to float.

For example, a 100 pound block of metal won’t move much water out of the way, and sinks fast since it’s denser than water. However , a 100 pound block of metal reshaped into a boat pushes more water out of the way and will float if you design it well!

What is the shape of your glitter? Does it float or sink in the gelatin?

Here’s a video I made for KidScience app that demonstrates how to make window gellies

Credit: My 11 YO daughter came up with the brilliant idea to stick this experiment on windows. I was just going to dry out the gelatin shapes to make ornaments. Kids are often way more creative than adults!

Egg-Eating Monsters

 - by KitchenPantryScientist
It’s easy to create a bottle monster that sucks up hard-boiled eggs! We demonstrated how to make these on Kare11. Click here to watch.
IMG_3492
*This experiment requires adult supervision, since it requires the use of a match or lighter.  

You’ll need:

-a glass bottle, like a juice bottle, whose neck is a little smaller than a hard-boiled egg

-small or medium-sized hard-boiled eggs, peeled

-birthday candles

-a long match or lighter

1.  Decorate your bottle to look like a monster, with the mouth of the bottle on the mouth-end of the monster

2.  Put one or two birthday candles in the wide end of a hard-boiled egg.

3. Light the candles and hold them under the inverted bottle to warm the air inside.

IMG_3495

4. Hold your bottle upside down and put the candle end of the egg up into the bottle so it forms a seal. Continue to hold the egg until the candle goes out and the egg is “pushed” into the bottle by atmospheric pressure, which is the weight of the air pushing down on the egg.

IMG_3496

What happened? 

The flame from the candle heats the air in the bottle. When the candle goes out from lack of oxygen, the remaining air in the bottle cools rapidly, decreasing the air pressure in the bottle and creating a partial vacuum.  The outside air, whose atmospheric pressure is higher, pushes the egg into the bottle as it attempts to equalize the pressure inside of the bottle.

Vegetable Vampires

 - by KitchenPantryScientist

Plants love water as much as vampires love blood. Although they don’t have long thin fangs, they’ve developed a great system for pulling water up through their trunks and stems to their highest leaves using  capillary action.

The kids and I demonstrated how to make them on Kare11 Sunrise news last week. Click here to watch.

after 24 hours of "drinking"

after 24 hours of “drinking”

Make a vegetable vampire and watch capillary action move colored water through the cabbage creature you created.

To make a leafy vampire, you’ll need:

-head of fresh napa cabbage

-2 large cups,  jars or plasticware containers  large enough to hold the base of ½ of your cabbage

-food coloring

-fruits and veggies to use as eyes and eyebrows on your monster

-toothpicks

-rubber bands or string

 First, fill your two containers ¾ of the way to the top with warm (not hot) water.

Add 10 or more drops of blue food coloring to one container and 10 or more drops of red food coloring to the other .

With a sharp knife, cut the cabbage in half vertically, from the bottom up, leaving the top 10cm or so intact, so the two pieces are still attached at the crown.  If possible, try to cut down the middle of one of the big leaves.

Use rubber bands to secure the bottoms of each side of the cabbage and make a fresh cut at the bottom, a few cm up from the old cut.

Put one half of the base of your cabbage in the red water, and the other half in the blue water.

Decorate your two “vampires” with eyes and spooky eyebrows made from olives and peppers (or whatever you have in the refrigerator.)  Secure the decorations with toothpick.

IMG_3360

Keep an eye on your cabbage to see how much colored water it’s drinking. Your vegetable vampire will have to drink for 24-48 hours for the best results.

Plants survive by drawing nutrients dissolved in water up into their stems, stalks, trunks, branches and leaves.

Capillary action is the main force that allows the movement of water up into plants. In a narrow tube, on a surface that attracts water, the attraction between the surface and water, coupled with the attraction of the water molecules to each other, pulls water up. Plants are composed of huge numbers of tube-shaped cells that take advantage of these physical forces.

In this experiment, you can see colored water being taken up, via capillary action, into your cabbage.

Imagine how high the water in giant redwoods has to travel to reach the leaves at the top.  In very tall trees, a process called transpiration helps the water overcome the forces of gravity.  Here’s a transpiration experiment you can try at home.

Halloween Science Roundup

 - by KitchenPantryScientist

Halloween Halloween brings out the kid in all of us, and there’s no better way to celebrate than with some ghoulish science experiments. Next week, I’ll be adding Vegetable Vampires and Zombie Candy to the lineup!

Here’s a list of our favorites. Just click on the name of the experiment to go to the instructions, see photos of what to do, and learn a little science.  Most have links to videos or TV segments where I demonstrate how to do the experiments.

Shocking Machine Make an electrophorus and Leyden jar to shock your friends! Here’s how to do it. We demonstrated it on Kare11 last week!
Frankenworms Gummy worms soaked in baking soda and water come to “life” when you drop them into vinegar! Click here for directions and a video.
Goblin Goo (All you need is cornstarch and water. Here’s a video on how to make the goo.  You can add a little food coloring to the water if you want, but it may stain your hands!)
Bag of Blood (If you have ziplock baggies, water, red food coloring and skewers, you can do this experiment!) Here’s the video.
Fizzy Balloon Monster Heads (After we made Goblin Goo, I demonstrated how to make Fizzy Balloon Monster heads. Click here to watch.)
Magic Potion (Bubbly, stinky Halloween fun: I made a short video on how to make magic potion. Click here to watch it.
Mad Scientist’s Green Slime (To see a TV segment where we made Mad Scientist’s Green Slime, click here!) Here’s another video.
Apple Mummies (Here’s a link to a TV segment where the kids and I demonstrated how to make Apple Mummies.  Click here.)
Alien Monster Eggs (These make a great centerpiece for a Halloween party, when you’re done playing with them.) I demonstrated how to make them on Kare 11! Click here to watch the video.
Creepy Critter Slingshots Lob Marshmallow eyeballs and spiders at a pumpkin or another target in this fun physics experiment.

Science on a Stick: Rock Candy

 - by KitchenPantryScientist

Got sugar? You can grow big, edible sugar crystals, commonly called “rock candy,” in your own kitchen.  We thought they’d make a great science experiment to demonstrate at the Minnesota State Fair, where foods on a stick hold sway.

IMG_3245

Like bricks in a wall, crystals are solids formed by repeating patterns of molecules. Instead of mortar, the atoms and molecules are connected by atomic bonds.

They can be big or small, but crystals made from the same atoms or molecules always form the same shape. Table sugar, or sucrose, is made up of a molecule composed of two sugars, glucose and fructose.  The crystals formed by sucrose are hexagonal (six-sided) prisms, slanted at the ends.

To make rock candy on a stick, you’ll need: 5 cups white granulated sugar, 2 cups water, cake pop sticks or wooden skewers, and food coloring

Seed Crystals

  1. Dip one end of cake-pop sticks or wooden skewers in water and then roll them in granulated white sugar. The sugar should cover 2-3 inches of the stick. Let them dry completely. These are the seeds for the sugar crystal growth.
  2. Boil 2 cups water and 5 cups sugar until sugar is dissolved as much as possible. It should look like syrup. This is your supersaturated sugar solution.
  3. Let syrup sit until it is no longer hot and pour into glass containers. Add food coloring and stir.
  4. When colored syrup is completely cool, set the sugary end of the sugar-seeded cake pops or skewers into the syrup and let them sit for about a week.

IMG_3177

5. Gently move the sticks around occasionally, so they don’t stick to the crystals in the bottom of the glass. If the glass container gets too full of crystals, pour the syrup into a new container and move your stick into the cleaner syrup to grow more crystals. When the rock candy is done, drain the excess syrup and let them dry. Enjoy!

sugar crystals

The science behind the candy?  A supersaturated solution is one that is forced to hold more atoms in water or another solute than it normally would. Supersaturated solutions can be made using heat or pressure.  Crystals start to form when a supersaturated solutions encounters a “seed” atom or molecule, causing the other atoms to come out of the solution and attach to the seed. In this case, the seed molecules were the sucrose molecules we dried onto the sticks.

 

Butter Candles and Biofuel

 - by KitchenPantryScientist

Biofuels are burnable energy sources produced by living organisms, like corn, algae, and even cows.   Microorganisms and plants gather carbon from the atmosphere and incorporate it into the organic compounds that make up things like leaves, fruit, stems and wood. When animals eat plants and microbes, they store some of the carbon energy they’ve gobbled up as fat, like the milk fat used to make butter. Scientists call carbon stored in plants, microbes and animals “new” carbon. Old carbon is carbon tied up in fossil fuels like coal and oil, that’s been underground for millions of years.

Butter Candles

We used broken-off skewers to attach our butter candles to an ear of corn.

Although butter isn’t usually burned as a fuel, a Pennsylvania farm show recently converted their thousand pound butter sculpture into 3 days-worth of power for a local farm, using a methane digester. The New York State Fair turned its butter sculptures into biodiesel fuel.  At home, you can make a stick of butter into a candle to see for yourself how an animal product can be used as a fuel.

To make butter candles you’ll need a stick of butter, a toothpick or skewer, some cotton kitchen twine and scissors.

IMG_3189

1. Cut the butter into the size candles you want. Place your candles on a fire-proof surface, like a metal plate.

IMG_3196

2. Cut pieces of string slightly longer than the height of your candles.

3. Use a skewer or toothpick to poke a hole from the top of your candle to near the bottom.

IMG_3205

4. Push your string into the hold using your skewer or toothpick. Leave 1/4 inch or so sticking out. This is your candle wick.

IMG_3215

5. Rub a little butter onto the wick. Light your candle. It may take a few tries, but soon it should burn like a wax candle.

*As with all candles, butter candles should never be left unattended. Be sure to place your candles on a surface like a candle holder that cannot catch fire.

What happens?  The lit cotton wick starts to burn and liquefies some of the butter fat. The wick then absorbs the melted butter and pulls it up,via capillary action, to the flame. The flame starts to burn the fat vapors rather than the wick, in a combustion reaction. This reaction produces heat, water vapor and carbon dioxide gas, putting the carbon is back in the atmosphere.

Since burning food isn’t an efficient use of energy or money (it takes lots of oil to raise and care for a cow,) scientists are coming up with ways to turn animal fats and byproducts that can’t be used as food into biofuels.  Some inedible plant foods can be reused as well. For example, some cars can run on used cooking oil. Can you imagine how much oil a fast food restaurant throws away each week?

Although butter will never replace candle wax, butter candles are a good way to introduce the carbon cycle and get kids thinking about how new fuels and cleaner-burning fuel will impact the future of our planet.

To make the corn candle at the top of this post, we attached the butter candles to an ear of corn with broken off wooden skewers.

Simple Water Rockets

 - by KitchenPantryScientist

You’ll have a blast learning physics by making water rockets!

While NASA’s rockets use rocket fuel as their working  mass, these rockets use water.  As pressurized air forces the water out of your rocket, the rocket moves in the opposite direction, just like Newton’s Third Law says it will. “For every action, there is an equal and opposite reaction.”

Although these rockets lack fins, a payload and a nose cone, you can see from this NASA illustration that they’re very similar to real rockets.  You can make a complicated launch pad like this, but we decided to make things easy.

For this experiment, you’ll need:

-an empty one or two liter bottle from a carbonated beverage

-a cork that has been cut in half and will fit in the mouth of your bottle  (An adult should do this. I used a serrated knife.)

-a needle for inflating balls

-a bike or ball pump

-a cardboard box cut to hold the bottle at an angle pointing away from you. This is your launch pad.

Push the needle through the cork so that it pokes out of the other side. Use the hole from the corkscrew to make it easier.

Needle should poke all the way through the cork.

Fill the bottle about 1/3 of the way full of water and insert the cork in the bottle.

Set the bottle in the cardboard box so that it’s pointing up, but away from you. See the photograph.

water rocket in launch pad

Attach the needle to the bike pump, stand behind the launch pad and start pumping air into the bottle.  The air pressure will build in the bubble at the top of the rocket. When the pressure gets high enough, it will force the cork and water out of the bottle with lots of force, and as the water shoots down, the rocket will shoot up!

What happens if you add more water, or less water to your rocket?

Can you imagine riding a real rocket? Check out Astronaut Abby’s website to meet a girl who wants to ride a rocket some day and ask an astronaut on the International Space Station questions!

 

Nature Walk Bracelets

 - by KitchenPantryScientist

I can’t get over how young my kids look in this post, which I first published a few years ago. This is a great science/art crossover project!
IMG_2660

Summer has finally arrived, and a fantastic way to enjoy it is to take a nature walk.  While you walk, watch for signs of spring and assemble your discoveries on your wrist with a nature walk bracelet.  It’s always a good idea to bring a few bags along too- one for larger treasures (like pine cones) and one for trash.  You can study nature and clean up the environment at the same time!

All you need is duct tape.  Cut the tape so it fits comfortably around your wrist and tape it around like a bracelet, sticky side out.  Take a walk in a park or down your own street and look for small leaves, acorns, flowers and other natural artifacts to adorn your wristlets.  Be sure to watch for birds while you walk!

IMG_2684

We wore our bracelets all afternoon and several people mistook them for real jewelry.  My oldest daughter thought they looked even prettier as the leaves and flowers wilted and flattened out on the tape.

IMG_2694Enjoy!