Tag: STEAM’

Supercool! Ice Science for Kids

 - by KitchenPantryScientist

Under the right conditions, purified water can get much colder than 32 degrees before it freezes into a solid. This “supercooled” water will instantly freeze when it touches an ice crystal.

You don’t need a special lab to make supercooled water. In fact, you can make it in your own freezer!

Image from Outdoor Science Lab for Kids (Quarry Books 2016)

1. Place three 12 oz bottles of water (caps loosened and re-tightened) in the freezer. Two should be filled with purified water and one with tap water.

2. Wait 2 hours and then check them every 5 minutes. When the tap water is frozen, gently remove the other two bottles from the freezer. (Tap water freezes first, because it contains some impurities that help ice crystals form more easily.)

3. Carefully open one bottle of purified water and pour it onto a few ice cubes on a plate. The supercooled water from the bottle will instantly crystallize into ice when it hits the cubes, making slush. Try it with the second bottle. There may be some freezing time variation between freezers, so you may have to experiment to find the perfect amount of time it takes your freezer to supercool water!

You can do the same thing by putting bottled water in a cooler full of ice, salt, and water. Salt lowers the melting temperature of ice, which makes the salty ice water cold enough to freeze bottles of liquid. Try the same experiment using soda to make a slushy! (From Outdoor Science Lab for Kids-Quarry Books 2014)

Image from Outdoor Science Lab for Kids (Quarry Books 2016)

Rainbow Icicles -Winter Science for Kids

 - by KitchenPantryScientist

Grab your coat and head outside to try this fun winter science project!

Rainbow Ice (kitchenpantryscientist.com)

 

You’ll need:

A large plastic zipper bag

Cotton kitchen twine

a toothpick or wooden skewer

ice-cold water

food coloring

a spray bottle

a squeeze bottle or syringe (optional, but helpful)

a very cold day (below 10 degrees F works best, but you can try it on any day when it’s below freezing)

 

Note: This experiment takes lots of playing around and results will vary depending on how cold it is outside. Remind your kids (and yourself) to be patient and try it on a colder day if it doesn’t work the first time around! If the bag leaks too quickly, try making one with smaller holes around the string.

Rainbow Ice (kitchenpantryscientist.com)

What to do:

  1. Use a toothpick or skewer to poke 3 small holes in the bottom of a zipper plastic bag. Make one in the middle and one on each end.
  2. Cut three long (3 feet or so) pieces of kitchen twine and knot them at one end.
  3. Carefully thread the twine through the holes in the bag so that the knots are inside the bag to keep the strings from falling through. Try to keep the holes from getting too big, since the bag will be filled with water and you’ll want it to drip out very slowly around the string.

Rainbow Ice (kitchenpantryscientist.com)

4. Attach two more pieces of twine to each top corner of the bag (above the zipper) to use for hanging the bag

5. Go outside and hang the bag from a low tree branch or railing.

6. Tie each of the three strings to something on the ground, like a rock, piece of wood, or the handle of an empty milk carton filled with water to weight it down. Arrange the objects so that the strings loosely radiate out at around a 45 degree angle. (See photo)

7. Add food coloring to some ice-cold water in a pitcher.

8. Fill the spray bottle with ice-cold water.

9. Add the cold colorful water to the zipper bag hanging outside. Zip the top of the back to slow the rate of leaking.

10. Immediately spray the strings with water to guide the leaking water down the strings.

10. Wait for the water on the strings to freeze. Use your syringe to add a little bit more water to the strings (same color) and wait for them to freeze again. Repeat until you have a nice layer of ice/icicles.

11. Refill the bag, using a different color of ice-cold water. Spray the strings lightly again. Repeat step 11.

12. Add layers of color to the icicles until you’re happy with the way they look!

Rainbow Ice (kitchenpantryscientist.com)

The science behind the fun:

Icicles form when dripping water starts to freeze. Scientists have discovered that the tips of icicles are the coldest part, so that water moving down icicles freezes onto the ends, forming the long spikes you’ve seen if you live in a cold climate. When you add different colors of water to icicles in sequence, the color you add last will freeze onto the tip of the ice.

Here’s a cool article on icicle science by an expert, and another great article on “Why Icicles Look the Way They Do.”

You’ll find more fun ice science experiments in my book “Outdoor Science Lab for Kids” and in my upcoming books “STEAM Lab for Kids” (Quarry Books April 2018) and “Star Wars Maker Lab” (DK- July 2018)

 

Give the Gift of #STEM: Homemade Science Kit

 - by KitchenPantryScientist

Image from “Kitchen Science Lab for Kids” (Quarry Books 2014)

There are few gifts more fun than a homemade science kit. Give a kid a bottle of vinegar and a box of baking soda and you’ll make their day. Throw in a bottle of Diet Coke and some Mentos mints, and you may be their favorite person ever. Make a kit for your kids or grand kids. Make one for your favorite niece or nephew. Encourage kids to make kits for friends and siblings.

Here are some ideas for items to include in your kit.I’ve highlighted links to the experiments on my website (just click on the blue experiment name) in case you want to print out directions to add to your kit. You can also find these experiments on my Kitchen Pantry Scientist YouTube channel!

-composition book: Makes a great science notebook to draw, record, and tape photos of experiments into.
-clear plastic cups to use as test tubes and beakers
-measuring spoons and cups 
-school glue (white or clear) for making Mad Scientist’s Slime
-contact lens solution for making Borax-free Slime
-gummy worms to transform into Frankenworms
-baking soda: Can be used for a number of experiments like fizzy balloons, magic potion . Or just mix with vinegar to make carbon dioxide bubbles.
-vinegar Great for fizzy balloons , alien monster eggs and magic potion.
-balloons for fizzy balloons.
-dry yeast for yeast balloons.
-white coffee filters: can be used for magic marker chromatography, in place of a paper bag for a coffee-filter volcano or making red cabbage litmus paper.
-cornstarch:Lets you play with Cornstarch Goo, a non-newtonian fluid. Here’s the video.
-marshmallows with rubber bands and prescription bottle rings you have around the house can be used to make marshmallow catapults. My kids used theirs to make their own Angry Birds game.
-Knox gelatin and beef bouillon cubes can be used to make petri plates for culturing microbes from around the house. You can also use the gelatin for cool osmosis experiments!
-food coloring Helps you learn about surface tension by making Tie Dye Milk. Here’s the video. You can also easily make colorful sugar-water gradients that illustrate liquid density!
-Mentos mints will make a Mentos geyser when combined with a 2L bottle of Diet Coke.
-drinking straws are great for NASA soda straw rockets and a carbon dioxide experiment.

To take it up a notch, throw in a copy of one of my book! You can find them on Amazon, Barnes and Noble and anywhere else books are sold! 

Happy Experimenting! 

 

Holiday Science: Candy Cane Art

 - by KitchenPantryScientist

Crying over broken candy canes? Cry no more. Make art!

Candy Cane Art- image KitchenPantryScientist.com

Candy Cane Art- image KitchenPantryScientist.com

My publisher recently sent me a copy of “Amazing (Mostly) Edible Science,” by Andrew Schloss. There are tons of fun experiments in the book, but Candy Cane Origami seemed like a perfect one to try during the holidays.

*Melted candy can get dangerously hot, so parental supervision is required!

You’ll need:

-candy canes (broken or whole), wrappers removed

-heavy-duty aluminum foil

-a cookie sheet

-a wire cooling rack

-an oven

img_5758

What to do:

  1. Preheat oven to 250F.
  2. Cover cookie sheet with foil
  3. Place candy canes on foil, not touching each other
  4. Bake candy canes for around 10 minutes and have an adult check them. They should be stretchy, but not too hot to touch.img_5761
  5. When the candy canes are ready, bend, fold, twist and pull them into cool shapes. Try pulling one long and wrapping it around a chopstick to make a spiral. What else could you try?
  6. If the candy gets to brittle to work with, put it back in the oven for a few minutes to make it soft again.
Candy Cane Art- image KitchenPantryScientistcom

Candy Cane Art- image KitchenPantryScientistcom

The science behind the fun:

If you looks at the ingredients of candy canes, they’re usually made of table sugar (sucrose), corn syrup, flavoring, and food coloring. Glucose and fructose are sweet-tasting molecules that stick together to make up most of the sugars we eat, like table sugar (sucrose) and corn syrup. You can think of them as the building blocks of candy.

At room temperature, candy canes are hard and brittle, but adding heat changes the way the molecules behave. Both table sugar and corn syrup contain linked molecules of glucose and fructose, but corn syrup has much more fructose than glucose, and the fructose interferes with sugar crystal formation. According to Andrew Schloss, “the corn syrup has more fructose, which means the sugar crystals in the candy don’t fit tightly together. The crystals have space between them, which allows them to bend and move without cracking.

Here’s a great article on the science of candy-making!

If you’re looking for holiday gifts for a science-loving kid, my books Kitchen Science Lab for Kids and Outdoor Science Lab for Kids include over 100 fun family-friendly experiments! They’re available wherever books are sold.

Think #STEAM! Homemade Holiday Window Stickies

 - by KitchenPantryScientist

 

Gelatin is the substance that makes Jell-O jiggle. See what happens when food coloring molecules move, or DIFFUSE through Jell-O.

IMG_3674

This creative science experiment that my kids and I invented lets you play with floatation physics by sprinkling glitter on melted gelatin, watch colorful dyes diffuse to create patterns and then use cookie cutters to punch out sticky window decorations.  Water will evaporate from the gelatin, leaving you with paper-thin “stained glass” shapes.

You’ll need

-plain, unflavored gelatin from the grocery store or Target

-food coloring

a drinking straw

-water

-a ruler

-glitter

*You can use the recipe below for two pans around 8×12 inches, or use large, rimmed cookie sheets for your gelatin. For a single pan, cut the recipe in half.

Step 1. Add 6 packs of plain, unflavored gelatin (1 oz or 28 gm) to 4 cups of boiling water. Stir well until all the gelatin has dissolved and remove bubbles with a spoon.

Step 2. Allow gelatin to cool to a kid-safe temperature. Pour the liquid gelatin into two large pans so it’s around 1-1.5 cm deep. It doesn’t have to be exact.

Step 3. Sprinkle glitter on the gelatin in one pan.  What happens?
IMG_3623
Step 4. Allow the gelatin to harden in both pans.

Step 5. In the pan with no glitter, use a straw to create holes in the gelatin, a few cm apart, scattered across the surface. It works best to poke a straw straight into the gelatin, but not all the way to the bottom. Spin the straw and remove it. Then, use a toothpick or skewer to pull out the gelatin plug you’ve created. This will leave a perfect hole for the food coloring. Very young children may need help.
IMG_3628
Step 6. Add a drop of food coloring to each hole in the gelatin.
IMG_3640
Step 7. Let the gelatin pans sit for 24 hours. Every so often, use a ruler to measure the circle of food coloring molecules as they diffuse (move) into the gelatin around them (read about diffusion at the bottom of this post.)  How many cm per hour is the color diffusing?  Do some colors diffuse faster than others? If you put one pan in the refrigerator and an identical one at room temperature, does the food coloring diffuse at the same rate?

Step 8. When the food coloring has made colorful circles in the gelatin, use cookie cutters to cut shapes from both pans of gelatin (glitter and food coloring), carefully remove them from the pan with a spatula or your fingers, and use them to decorate a window. (Ask a parent first, since some glitter may find its way to the floor!) Don’t get frustrated if they break, since you can stick them back together on the window.
IMG_3641
Step 9. Observe your window jellies each day to see what happens when the water evaporates from the gelatin.
IMG_3688When they’re dry, peel them off the window. Are they thinner than when you started? Why? Can you re-hydrate them by soaking the dried shapes in water?
IMG_3691The Science Behind the Fun:

Imagine half a box filled with red balls and the other half filled with yellow ones.  If you set the box on something that vibrates, the balls will move around randomly, until the red and yellow balls are evenly mixed up.

Scientists call this process, when molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules DIFFUSION. When the molecules are evenly spread throughout the space, it is called EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids (semiconductors for computers are made by diffusing elements into one another.)

Think about the way pollutants move from one place to another through air, water and even soil. Or consider how bacteria are able to take up the substances they need to thrive. Your body has to transfer oxygen, carbon dioxide and water by processes involving diffusion as well.

Why does glitter float on gelatin? An object’s density and it’s shape help determine its buoyancy, or whether it will float or sink. Density is an object’s mass (loosely defined as its weight) divided by its volume (how much space it takes up.) A famous scientist named Archimedes discovered that any floating object displaces its own weight of fluid. Boats have to be designed in shapes that will displace, or push, at least as much water as they weigh in order to float.

For example, a 100 pound block of metal won’t move much water out of the way, and sinks fast since it’s denser than water. However , a 100 pound block of metal reshaped into a boat pushes more water out of the way and will float if you design it well!

What is the shape of your glitter? Does it float or sink in the gelatin?

Here’s a video I made for KidScience app that demonstrates how to make window gellies

Credit: My 11 YO daughter came up with the brilliant idea to stick this experiment on windows. I was just going to dry out the gelatin shapes to make ornaments. Kids are often way more creative than adults!

Rubber Band Car

 - by KitchenPantryScientist

It’s fun to make a rubber-band powered car from cardboard, straws, and wooden skewers!

You’ll need:

-heavy cardboard

-rubber bands

-glue (a glue gun works best)

-a plastic straw

-wooden skewers

-a CD (or a compass)

-a ruler

-screwdriverCu

-pipe cleaner (optional)

Hints: Parental supervision recommended for hot glue gun use.

Here’s what you’ll be building:

Rubber Band Car kitchenpantryscientist.com

What to do:

  1. Wrap cardboard around a large spice bottle so you can see how it bends. Cut a piece of cardboard about 9 inches (22cm) long to wrap around the bottle. Trim off the excess cardboard and tape it to create a tube.

    kitchenpantryscientist.com

  2. Trace a CD or use a compass to make 8 circles that are around 4 and 1/2 inches (12 cm) in diameter. Use a ruler to make a square around each circle and then diagonal lines to mark the center of each circle. Cut them out and glue two circles together until you have four wheels. Use skewers to poke holes through the center of each wheel.

    kitchenpantryscientist.com

  3. Poke skewers through each end of the cardboard tube, about 1 and 1/2 inches (4 cm) from the end of each tube. Make sure that the skewers are parallel and that they line up when you look through the end of the tube.

    kitchenpantryscientist.com

    kitchenpantryscientist.com

  4. Use a screwdriver to make the holes larger.

    kitchenpantryscientist.com

  5. Cut 4 pieces off of a straw that are about 1/2 inch (1.5cm) long. Glue them to the outside of each hole in the tube. Use a skewer to help align them. The skewer should spin freely.

    kitchenpantryscientist.com

  6. One at a time, put wheels on the skewers and glue the OUTSIDE of the wheel to the skewer. Make sure that the wheels are parallel to the car, and to each other as they dry. Cut off excess skewer.

    kitchenpantryscientist.com

    kitchenpantryscientist.com

  7. Poke a skewer down the center of one end of the car, parallel to the wheels so that it’s sticking out about 1 inch (3 cm.) See image above.
  8. Decorate the car!
  9. Tie three thin rubber bands together and hook them over the skewer that’s sticking out. If you have a pipe cleaner or wire, hook it onto the other end of the rubber bands. Drop the rubber bands down through the center of the tube.

    kitchenpantryscientist.com

  10. Grab the rubber bands from the end opposite where they are attached to the car. Remove the pipe cleaner hook and wind them around the skewer to create tension in the rubber bands. Wind them until they’re tight.

    kitchenpantryscientist.com

  11. Set the car down and let the wheels start to spin to see what direction the car will go. When you’re ready, let go!
  12. Measure how far the car traveled.

Enrichment: How can you make the car go faster or farther. Try using different kinds and numbers of rubber bands. How could you redesign the car to make it work better?

The Science Behind the Fun:

In this experiment, you use your body’s energy to twist rubber bands around the wooden skewer axle of a cardboard car. The energy is stored as elastic energy in the tightly-stretched rubber bands. When you let the car go, the rubber bands apply enough force on the axle to turn the wheels on the car and elastic energy is transformed into the energy of motion, which is called kinetic energy.

 

Mirror Image Plant Prints

 - by KitchenPantryScientist

Yesterday on Twin Cities Live, I demonstrated some fun botanical science projects for learners of all ages, including Vegetable Vampires and Leaf Chromatography.

This fun art/science project lets you transfer plant pigments to cloth, creating beautiful prints of your favorite leaves and flowers. It’s especially great for fall, when there are so many colorful leaves around.

Mirror Image Plant Prints- kitchenpantryscientist.com

You’ll need:

-Fresh leaves and flowers (Dry leaves won’t work.)

-A hard, smooth pounding surface, like a wooden cutting board or carving board

-Wax paper or plastic wrap

-Mallets or hammers

-Untextured cotton cloth, like a dishtowel. Heavy cloth works better than very thin cloth.

-*Alum and baking soda to treat cloth (This is optional. I don’t pre-treat my fabric, but the treatment step will help bond and preserve color, if you want to frame your prints. You can also buy fabric that’s pre-treated for dyeing.)

Mirror Image Plant Prints- kitchenpantryscientist.com

Safety tips: Protective eye wear is recommended. Young children should be supervised when using mallets and hammers.

What to do:

*If treating cloth: The day before you do the project, add 2 quarts water to a large pot. Add 1 Tb alum and 1 tsp baking soda to the water. Add the cotton and bring to a boil. Simmer for 2 hours, turn off heat and soak for at least two hours. Let fabric dry.

The next steps are the same, whether you’re using an untreated piece of cotton or treated cloth.

  1. Take a walk to collect colorful leaves and flowers. Choose plants that can be flattened. Flowers with huge centers, like coneflowers don’t work as well, but petals may be removed and pounded.
  2. Cover the pounding surface with waxed paper or plastic wrap.
  3. Cut a piece of cloth that will fit on the pounding surface when folded in half. Iron the fold.
  4. Open the cloth and lay it on the pounding surface. (See image above)
  5. Arrange leaves and flowers on the cloth.

    Mirror Image Plant Prints- kitchenpantryscientist.com

  6. Fold the cloth over the plants and pound it with the hammer or mallet. If you’re using a hammer, pound more gently.
  7. Pound until you can see the forms of the leaves through the fabric. As the pigment leaks through, you’ll see the outlines of what you’re smashing. Hint: Hammers work better than mallets for fall leaves. For juicy leaves and flowers, use a mallet or hammer gently.

    Mirror Image Plant Prints- kitchenpantryscientist.com

  8. When you’re finished pounding, unfold the fabric to reveal the print you created. Remove the leaves and petals.

    Mirror Image Plant Prints- kitchenpantryscientist.com

  9. Label the image with plant names, enhance it with paint or markers, or leave nature’s design to speak for itself.

The Science Behind the Fun:

Pigments are compounds that give things color, and many of them are found in nature. Flowers, leave, fruits and vegetables are full of brilliant pigments. In this experiment, we transfer plant pigments to cloth by bursting plant cells using pressure from a hammer or mallet.

The green pigment found in leaves is called chlorophyll. In the fall, many trees stop making chlorophyll, and the red, yellow and orange pigments inside the leaves become visible.

Although you create a mirror image of leaves and flowers, you’ll notice that the color may be more intense on one side of the print. A waxy covering called a cuticle covers leaves, and is sometimes thicker on the top than on the underside of the leaf. It may affect the transfer of pigment to the cloth, making it easy to see structures like veins on the leaf print.

Enrichment:

What parts of the leaf can you identify in the print you created?

Bristlebots

 - by KitchenPantryScientist

With a brush, some batteries, a small motor and a few wires, it’s easy to create a robot that spins, bumps and buzzes around on any smooth surface.

You’ll need:

-a small brush, like a vegetable brush or a cleaning brush

-two AA batteries

battery holder for 2 AA batteries (optional)

-insulated wire

-a small toy motor with lead wires and pencil eraser or small rubber stopper (or vibrating motor)

battery clip (optional)

-zip ties (optional)

-electrical tape or duct tape

Bristlebot-KitchenPantryScientist.com

Make your bristlebot!

  1. Attach the motor to one end of the top of the brush. If it’s not a vibrating motor, stick a eraser or rubber stopper onto the spinning post to make it vibrate. Use a zip tie or duct tape to secure it. Make sure the spinning parts can rotate freely.

    Attach motor- KitchenPantryScientist.com

  2. Attach the battery holder to the top of the brush near the motor.

    Attach batteries- KitchenPantryScientist.com

  3. Insert batteries in motor.
  4. Twist wires around the motor terminals and secure with tape. (These may be the wires on the battery clip, if you have one.)

    Connect battery clip- KitchenPantryScientist.com

  5. To start the motor, attach wires directly to the battery terminals, or to the battery clip and snap it onto the batteries.

    Bristlebot- KitchenPantryScientist.com

  6. Place your robot on a smooth surface to see what happens.

Enrichment: Try different brush shapes, sizes and angles to see how they move. Does your robot spin in the same direction as the motor, or the opposite direction?

The Science Behind the Fun: In this experiment, you complete a battery-powered electrical circuit to spin a vibrating motor. The vibrations traveling through the bristles of the brush move your robot around on the floor.

 

 

 

 

Graphite Circuits

 - by KitchenPantryScientist

Electrons (negatively charged particles) can flow through substances called conductors.

Graphite, used to make pencil lead, among other things, is a conductor and can be used to make a simple circuit on paper. A circuit is just a path for electrical current.

You have to do this experiment with a graphite pencil, rather than the kind you use at school, but you can pick them up at most art supply stores. You’ll also need a few small LED bulbs, 2 wires with alligator clips on either end, and a 9 volt battery.

Adult supervision recommended.

  1. Make a thick, black rectangle using a graphite pencil. We used a #9 graphite crayon.
  2. Hook the two wires up to the battery terminals.
  3. Clip the wire attached to the positive battery terminal to one wire of an LED bulb. (Don’t test it on the battery, or you may blow it out.)

IMG_58434. Touch the un-attached LED wire to the other (left) side of the graphite bar.

IMG_58445.Touch the alligator clip attached to the negative battery terminal to the right side of the graphite bar you drew.

6.If it doesn’t light, switch the positive alligator clip to the other wire of the LED bulb and try it again.

7. Move negative clip closer to the bulb. It should get brighter as you decrease the distance.

 

8 Spring Science Eggsperiments

 - by KitchenPantryScientist

Spring is egg season. You may prefer dyed eggs, hard-boiled eggs, deviled eggs, or even dinosaur eggs. No matter what kind of eggs you like best, you’ll love these eggsperiments that let you play with the amazing architecture of eggs, dissolve their shells and even dye them with the pigments found in your refrigerator. Just click on experiments for directions and the science behind the fun!

Grow alum crystals in eggshells to create beautiful geode-like works of art. 

Egg Geode from Kitchen Science Lab for Kids (Quarry Books)

Egg Geode from Kitchen Science Lab for Kids (Quarry Books)

Dye eggs with spices, fruits and vegetables,

or dye them with red cabbage juice and use lemon juice and baking soda to paint them.

IMG_2504

Dissolve eggshells with vinegar and play with osmosis when you make “Alien Monster Eggs.”

Alien Monster Eggs from Kitchen Science Lab for Kids (Quarry Books)

Alien Monster Eggs from Kitchen Science Lab for Kids (Quarry Books)

 

You can stand on a carton of eggs to test their strength.

Standing on Eggs from Kitchen Science Lab for Kids (Quarry Books 2015)

Standing on Eggs from Kitchen Science Lab for Kids (Quarry Books 2015)

For a fun physics experiment, throw eggs at a hanging sheet.

From "Kitchen Science Lab for Kids" Quarry Books

From “Kitchen Science Lab for Kids” Quarry Books

Make egg-eating monsters and watch atmospheric pressure push eggs up into a bottle.CZ1A9811p

Egg drops are a fun way to test your engineering prowess. 

And finally, here’s a little more about the science of hard-boiled eggs.