Tag: christmas’

Give the Gift of #STEM: Homemade Science Kit

 - by KitchenPantryScientist

Image from “Kitchen Science Lab for Kids” (Quarry Books 2014)

There are few gifts more fun than a homemade science kit. Give a kid a bottle of vinegar and a box of baking soda and you’ll make their day. Throw in a bottle of Diet Coke and some Mentos mints, and you may be their favorite person ever. Make a kit for your kids or grand kids. Make one for your favorite niece or nephew. Encourage kids to make kits for friends and siblings.

Here are some ideas for items to include in your kit.I’ve highlighted links to the experiments on my website (just click on the blue experiment name) in case you want to print out directions to add to your kit. You can also find these experiments on my Kitchen Pantry Scientist YouTube channel!

-composition book: Makes a great science notebook to draw, record, and tape photos of experiments into.
-clear plastic cups to use as test tubes and beakers
-measuring spoons and cups 
-school glue (white or clear) for making Mad Scientist’s Slime
-contact lens solution for making Borax-free Slime
-gummy worms to transform into Frankenworms
-baking soda: Can be used for a number of experiments like fizzy balloons, magic potion . Or just mix with vinegar to make carbon dioxide bubbles.
-vinegar Great for fizzy balloons , alien monster eggs and magic potion.
-balloons for fizzy balloons.
-dry yeast for yeast balloons.
-white coffee filters: can be used for magic marker chromatography, in place of a paper bag for a coffee-filter volcano or making red cabbage litmus paper.
-cornstarch:Lets you play with Cornstarch Goo, a non-newtonian fluid. Here’s the video.
-marshmallows with rubber bands and prescription bottle rings you have around the house can be used to make marshmallow catapults. My kids used theirs to make their own Angry Birds game.
-Knox gelatin and beef bouillon cubes can be used to make petri plates for culturing microbes from around the house. You can also use the gelatin for cool osmosis experiments!
-food coloring Helps you learn about surface tension by making Tie Dye Milk. Here’s the video. You can also easily make colorful sugar-water gradients that illustrate liquid density!
-Mentos mints will make a Mentos geyser when combined with a 2L bottle of Diet Coke.
-drinking straws are great for NASA soda straw rockets and a carbon dioxide experiment.

To take it up a notch, throw in a copy of one of my book! You can find them on Amazon, Barnes and Noble and anywhere else books are sold! 

Happy Experimenting! 


Holiday Science: Candy Cane Art

 - by KitchenPantryScientist

Crying over broken candy canes? Cry no more. Make art!

Candy Cane Art- image KitchenPantryScientist.com

Candy Cane Art- image KitchenPantryScientist.com

My publisher recently sent me a copy of “Amazing (Mostly) Edible Science,” by Andrew Schloss. There are tons of fun experiments in the book, but Candy Cane Origami seemed like a perfect one to try during the holidays.

*Melted candy can get dangerously hot, so parental supervision is required!

You’ll need:

-candy canes (broken or whole), wrappers removed

-heavy-duty aluminum foil

-a cookie sheet

-a wire cooling rack

-an oven


What to do:

  1. Preheat oven to 250F.
  2. Cover cookie sheet with foil
  3. Place candy canes on foil, not touching each other
  4. Bake candy canes for around 10 minutes and have an adult check them. They should be stretchy, but not too hot to touch.img_5761
  5. When the candy canes are ready, bend, fold, twist and pull them into cool shapes. Try pulling one long and wrapping it around a chopstick to make a spiral. What else could you try?
  6. If the candy gets to brittle to work with, put it back in the oven for a few minutes to make it soft again.
Candy Cane Art- image KitchenPantryScientistcom

Candy Cane Art- image KitchenPantryScientistcom

The science behind the fun:

If you looks at the ingredients of candy canes, they’re usually made of table sugar (sucrose), corn syrup, flavoring, and food coloring. Glucose and fructose are sweet-tasting molecules that stick together to make up most of the sugars we eat, like table sugar (sucrose) and corn syrup. You can think of them as the building blocks of candy.

At room temperature, candy canes are hard and brittle, but adding heat changes the way the molecules behave. Both table sugar and corn syrup contain linked molecules of glucose and fructose, but corn syrup has much more fructose than glucose, and the fructose interferes with sugar crystal formation. According to Andrew Schloss, “the corn syrup has more fructose, which means the sugar crystals in the candy don’t fit tightly together. The crystals have space between them, which allows them to bend and move without cracking.

Here’s a great article on the science of candy-making!

If you’re looking for holiday gifts for a science-loving kid, my books Kitchen Science Lab for Kids and Outdoor Science Lab for Kids include over 100 fun family-friendly experiments! They’re available wherever books are sold.