Category:Food Science’

8 Spring Science Eggsperiments

 - by KitchenPantryScientist

Spring is egg season. You may prefer dyed eggs, hard-boiled eggs, deviled eggs, or even dinosaur eggs. No matter what kind of eggs you like best, you’ll love these eggsperiments that let you play with the amazing architecture of eggs, dissolve their shells and even dye them with the pigments found in your refrigerator. Just click on experiments for directions and the science behind the fun!

Grow alum crystals in eggshells to create beautiful geode-like works of art. 

Egg Geode from Kitchen Science Lab for Kids (Quarry Books)

Egg Geode from Kitchen Science Lab for Kids (Quarry Books)

Dye eggs with spices, fruits and vegetables,

or dye them with red cabbage juice and use lemon juice and baking soda to paint them.

IMG_2504

Dissolve eggshells with vinegar and play with osmosis when you make “Alien Monster Eggs.”

Alien Monster Eggs from Kitchen Science Lab for Kids (Quarry Books)

Alien Monster Eggs from Kitchen Science Lab for Kids (Quarry Books)

 

You can stand on a carton of eggs to test their strength.

Standing on Eggs from Kitchen Science Lab for Kids (Quarry Books 2015)

Standing on Eggs from Kitchen Science Lab for Kids (Quarry Books 2015)

For a fun physics experiment, throw eggs at a hanging sheet.

From "Kitchen Science Lab for Kids" Quarry Books

From “Kitchen Science Lab for Kids” Quarry Books

Make egg-eating monsters and watch atmospheric pressure push eggs up into a bottle.CZ1A9811p

Egg drops are a fun way to test your engineering prowess. 

And finally, here’s a little more about the science of hard-boiled eggs.

 

 

Edible Science: Ice Cream Games

 - by KitchenPantryScientist
Ice Cream Keep Away (Outdoor Science Lab for Kids-Quarry Book 2016)

Ice Cream Keep Away (Outdoor Science Lab for Kids-Quarry Book 2016)

Brrr. It’s really cold here in Minnesota. Perfect for making ice lanterns by filling balloons with water and setting them outside the back door. I had a great time talking ice lanterns and homemade ice cream (an edible experiment in my new book) on WCCO MidMorning this AM. As promised, here’s the recipe for “Ice Cream Keep Away.” After all, it’s never to cold to eat ice cream.

Ice Cream Keep Away (from Outdoor Science Lab for Kids- Quarry Books 2015)

Materials

  • – 2 cups milk
  • – 2 cups heavy cream
  • – ½ cup sugar
  • –   2 Tbs. vanilla
  • –  quart or pint-sized plastic zipper freezer bags
  • –  gallon-sized zipper freezer bags
  • – 2 cups of rock salt or table salt
  •  -large bag of ice
  • -dish towels

Safety Tips and Hints

  • If the ice cream isn’t frozen when you check it, add more ice and salt to the outer bag and continue to throw it around for another five or ten minutes.
  • You make enough ice cream mix in this lab to make 4 ice cream footballs at a time, so there’s plenty of ice cream and fun to go around!

Step 1:  Make an ice cream mixture by combining 2 cups milk, 2 cups cream, ½ cup sugar and 2 Tbs. vanilla to a bowl and mix well.

Step 2.   Add one cup of ice cream mixture to a quart or pint-sized freezer bag, squeeze out some of the air and zip it closed.

Step 3.    Place the small bag of ice cream mixture in a second small bag, squeeze out the air and zip it closed as well.

Step 4.     Place the double-bagged ice cream mixture into a gallon-sized bag and fill the larger back with ice.

Step 5.    Pour a generous ½ cup of salt over the ice in the bag and zip the bag shut.

Step 6.    Wrap a dish towel around the bag of ice and place it in a second gallon bag. Zip the outer bag closed.

Step 7.   Play catch with the bag of ice and ice cream for ten or fifteen minutes.

Step 8.   Remove the bag of ice cream mix from the outer bag and enjoy your frozen treat.

Enjoy eating your frozen experiment! (From Outdoor Science Lab for Kids-Quarry Books 2016)

Enjoy eating your frozen experiment! (From Outdoor Science Lab for Kids-Quarry Books 2016)

The Science Behind the Fun:

 Making ice cream is a lesson in heat transfer and crystallization.

Water is the solid form of ice. When you add salt to ice, it lowers the freezing temperature of the water, melting it and allowing it to remain a liquid far below water’s normal freezing temperature of 32 degrees F (O degrees Celsius.)

 In this lab, adding salt melts the ice, making a really, really cold ice-salt-water mix. The icy salt water pulls, or transfers, heat out of the ice cream mixture, freezing the water molecules in the milk and cream into ice crystals.

Depending on how fast ice cream freezes and what ingredients it contains, the ice crystals will be different sizes. If you freeze the mixture very fast, you will probably get big ice crystals that make the ice cream grainy. Ingredients like gelatin encourage smaller crystals to form, making smoother frozen treats.  Adding emulsifiers like eggs to the mix helps the fats and water combine better, creating ice cream that thaws more slowly.  

  • Try added less salt to the ice to freeze the ice cream more slowly. How does this change the texture of the final product?
  • What happens if you add a Tbs. of gelatin to the mix?

Epic Star Wars Themed Jell-O

 - by KitchenPantryScientist

Did you know you can use science to make amazing works of art in Jell-O? I created this experiment to make Star Wars Jell-O, but you can take it in whatever direction you want. Remember, you’ll need agar, lots of Jell-O and some coconut milk to start experimenting! If your agar figures break, you can fill in the cracks with more melted agar! I ordered the silicone Star Wars molds on Amazon.com.

IMG_5139

Star Wars Themed Jell-O : Educational Science Experiment created by KitchenPantryScientist.com

Here’s the science part: Agar is a substance extracted from the cell walls of red algae. It’s often used in cooking and science experiments. Agar has a higher melting temperature than the gelatin used to make Jell-O. So, if you put a piece of agar gel into melted Jell-O, the agar won’t melt unless the Jell-O is really hot (about 150 degrees Fahrenheit or 65 degrees Celsius!) That means you can create works of agar art to embed in your favorite Jell-O.  We used silicone molds, cookie cutters and a molecular gastronomy technique called oil spherification to make our agar decorations. To make the orbs using spherification, you simple drip coconut milk agar through cold oil, forming perfect spheres that solidify as they fall. We talked with Astronaut Abby on Kare11 Sunrise about how you could make these orbs in space. Click here to see the segment.

Vegetarians like to eat agar, since it’s made from algae and not animals. In labs, scientists use agar to make petri dishes for growing microorganisms, since it won’t melt at high temperatures in incubators. They also use it to make gels for electrophoresis, to separate DNA and RNA molecules by size! 

IMG_5121

Snowflake and Storm Trooper Jell-O (KitchenPantryScientist.com)

 

INSTRUCTIONS:

*If you want to make white orbs from the coconut milk agar, you’ll need to plan ahead and chill tall jar or glass of vegetable oil in the freezer until it is thick and almost frozen. You’ll also need some squeeze bottles or clean eyedroppers.

Coconut Milk Agar -To create your white decorations and mini orbs, mix up this coconut milk agar dessert.

2 1/2 cups water

4 Tbs Agar flakes from Asian section of grocery store or COOP

1 cup coconut milk (not lowfat) Mix the coconut milk well before you measure it.

4 Tbs. sugar

 In a sauce pan or the  microwave, heat 4 Tbs. agar in 2 and 1/2 cups water until the agar is completely dissolved. Adult supervision required. 

To the agar mixture, add 1 cup coconut milk and 4 Tbs. sugar. Mix Well. Pour into molds, pour into a pan to cut shapes out with cookie cutters, or pour some into a squeeze bottle to make white orbs. 

IMG_5100

Coconut Milk Orbs (optional cool science experiment

Slowly drip melted coconut milk agar (above) through ice-cold vegetable oil. As it fall through the oil, it should harden and form orbs. Collect the orbs with a slotted spoon and rinse before adding to your Jell-O.

IMG_5097

 

Jello-O

Follow the directions on the package for the speed set method. If you make a double batch, pour half of it into the bottom of a large, glass casserole dish or bowl. If it’s a single batch, pour the whole thing in. If you made coconut milk orbs, put some in the melted Jell-O to see whether they float or sink. Let the Jell-O solidify and arrange your agar decorations on the Jell-O.

IMG_5111

Set the coconut milk agar decorations on the first layer of Jell-O (KitchenPantryScientist.com)

 

Make or remelt more Jell-O. When it’s cooled down a bit, pour it over your decorations to trap them in the Jell-O. You may want to leave them sticking out a little, or cover them completely with Jell-O over them for effect.

What else could you try? What Jell-O masterpiece can you create?

IMG_5120

Han Solo got a little cracked when we took him out of the mold, but we fixed him with some melted coconut milk agar! (KitchenPantryScientist.com)

 

 

 

Edible Alien Eyeballs- A Diffusion Experiment for Halloween

 - by KitchenPantryScientist

Molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules in a process called  DIFFUSION. When the molecules are evenly spread throughout the space, they have achieved  EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids.
IMG_4968
You can watch food coloring molecules diffuse into gelatin (a colloid) when you do this fun, edible Halloween experiment.

Dissolve two 3oz packages of lemon Jell-O in 1 and 1/4 cups of boiling water. (Adult supervision required.) Allow it to cool briefly, and pour it into 2 ice-cube trays with oval-shaped holes. Refrigerate until firm.

Dissolve one 6oz package of Berry Blue Jell-O in 1 and 1/4 cups of boiling water. Cool briefly.

Using the end of a potato peeler or a strawberry corer to hollow out a circle in the middle of each yellow Jell-O “eyeball.” Carve the circle about halfway to the bottom of the gelatin. Use a toothpick or skewer to remove the Jell-O.

IMG_4925

Fill the hollow with melted blue gelatin and return to the refrigerator to harden. The blue Jell-O will be the pupil of the eye.

Set ice cube trays containing Jell-O in a casserole dish of hot tap water for 1-2 minutes. Turn upside down in another dish to un-mold and then move your eyeballs to another serving dish.

IMG_4944

Use a straw to add Kool-Aid liquid (like Cherry) to the center of each eyeball. Then, use a sharp skewer to draw lines out from the center.

IMG_4952

Cover with plastic wrap and let sit for a few hours so the Kool-Aid will start to diffuse.

Add a second color Kool-Aid drops (Like Blue Raspberry) to the center of the eye and repeat.

 

Cover and refrigerate until ready to serve. The Kool-Aid colors will continue to diffuse into the eyeballs!

IMG_4970

 

Enjoy!

Homemade Magic Orbs

 - by KitchenPantryScientist

My 8-YO loves Orbeez, those water-thirsty polymer balls that go from the size of cookie sprinkles to the size of marbles after a quick soak.

 

I wondered whether we could make something similar from gelatin or agar.

Homemade Magic Orbs- KitchenPantryScientist.com

Homemade Magic Orbs- KitchenPantryScientist.com (agar orbs on left, gelatin orbs on right)

A quick search online showed me that some chefs use a technique called oil spherification to make tiny round morsels using everything from balsamic vinegar to fruit juice, mixed with gelatin and agar.  It’s known to cooks as a “molecular gastronomy” technique, and takes advantage of the fact that water and oil don’t mix. Water-based droplets falling through chilled oil form  into perfect spheres due to surface tension, and gelatin and agar added to the mix are colloids that solidify as they cool.

 

Magic Orbs forming in cold oil (KitchenPantryScientist.com)

Magic Orbs forming in cold oil (KitchenPantryScientist.com)

We made some fun (inedible) orbs of our own, using the technique: standard orbs (from gelatin or agar and water), floating orbs (with agar and vinegar) and color-changing acid/base indicator orbs (from red cabbage juice and gelatin or agar.) Adult supervision is required for this project, since it involves hot liquids. The orbs may also be a choking hazard, so keep them away from toddlers. I demonstrated how to make them on Kare11 Sunrise News.

To make magic orbs, you’ll need

-unflavored gelatin or agar*

-water

-vinegar

-food coloring

-cold vegetable oil in a tall container. Chill oil in freezer or on ice for at least an hour, or until it is cloudy, but still liquid.

HINT: Orbs made with vinegar and agar shrink better than those made with gelatin (see floating orb recipe below!)

Standard colored orbs:

1. With adult supervision, dissolve 5 packets unflavored gelatin or 2 Tbs. agar in 1 cup hot water. Add 2 tsp. vinegar. Microwave and stir until completely dissolved.

2. Pour into smaller containers and add food coloring. When cooler, but not solid, add the melted, colored gelatin or agar to an empty glue container or squeeze bottle.

3. Drip gelatin or agar solution into the cold oil, a few drops at a time so it forms into marble-sized orbs and sinks. Drip two colors together to make multi-colored orbs! Allow to cool for 30 seconds or so and retrieve with a slotted spoon or strainer. Rinse with water and repeat, re-chilling the oil as needed until you have as many orbs as you want.

Making magic orbs on Twin Cities Live with Lindsey Brown and Steve Patterson (photo by Glenn Griffin)

Making magic orbs on Twin Cities Live with Lindsey Brown and Steve Patterson (photo by Glenn Griffin)

 

Lindsey Brown and Steve Patterson making orbs on Twin Cities Live (photo by Glenn Griffin)

Lindsey Brown and Steve Patterson making orbs on Twin Cities Live (photo by Glenn Griffin)

4. Rinse orbs with water. Dry them out by setting them on a plate overnight if you want to see them shrink and then re-hydrate them with water. Orbs can be kept in a plastic bag in the refrigerator. (Keep away from small children, since they may be a choking hazard.)

To make floating orbs, follow directions above, but make with 1 cup white vinegar and 2 Tbs. agar. They will sink and float when added to water with a few tsp. of baking soda mixed in as the vinegar and baking soda react to form carbon dioxide gas.

IMG_4056

To make color-changing orbs, dissolve 2 Tbs. agar or 5 packs unflavored gelatin in 1 cup red cabbage juice (magic potion) and follow directions for making orbs. Then drop them in vinegar to watch them turn pink or in water containing baking soda to watch them turn blue!

IMG_4048

 

Could you make homemade jelly beans using flavored gelatin using this same method? Try it!

*Agar, or agar agar flakes can be found in the Asian food section of many grocery stores!

 

Homemade Holiday Window Stickies (A Density, Diffusion, Evaporation Experiment)

 - by KitchenPantryScientist

I’m creating a fun new holiday experiment for 2014, but thought I’d re-post this experiment that my kids and I made up last year, since we love it so much. Try it!

What happens when food coloring molecules move, or DIFFUSE through gelatin, the substance that makes jello jiggle?

IMG_3674

This creative science experiment that my kids and I invented lets you play with floatation physics by sprinkling glitter on melted gelatin, watch colorful dyes diffuse to create patterns and then use cookie cutters to punch out sticky window decorations.  Water will evaporate from the gelatin, leaving you with paper-thin “stained glass” shapes.

You can watch us making them on Kare11 Sunrise News by clicking here.

You’ll need

-plain, unflavored gelatin from the grocery store or Target

-food coloring

a drinking straw

-water

-a ruler

-glitter

*You can use the recipe below for two pans around 8×12 inches, or use large, rimmed cookie sheets for your gelatin. For a single pan, cut the recipe in half.

Step 1. Add 6 packs of plain, unflavored gelatin (1 oz or 28 gm) to 4 cups of boiling water. Stir well until all the gelatin has dissolved and remove bubbles with a spoon.

Step 2. Allow gelatin to cool to a kid-safe temperature. Pour the liquid gelatin into two large pans so it’s around 1-1.5 cm deep. It doesn’t have to be exact.

Step 3. Sprinkle glitter on the gelatin in one pan.  What happens?
IMG_3623
Step 4. Allow the gelatin to harden in both pans.

Step 5. In the pan with no glitter, use a straw to create holes in the gelatin, a few cm apart, scattered across the surface. It works best to poke a straw straight into the gelatin, but not all the way to the bottom. Spin the straw and remove it. Then, use a toothpick or skewer to pull out the gelatin plug you’ve created. This will leave a perfect hole for the food coloring. Very young children may need help.
IMG_3628
Step 6. Add a drop of food coloring to each hole in the gelatin.
IMG_3640
Step 7. Let the gelatin pans sit for 24 hours. Every so often, use a ruler to measure the circle of food coloring molecules as they diffuse (move) into the gelatin around them (read about diffusion at the bottom of this post.)  How many cm per hour is the color diffusing?  Do some colors diffuse faster than others? If you put one pan in the refrigerator and an identical one at room temperature, does the food coloring diffuse at the same rate?

Step 8. When the food coloring has made colorful circles in the gelatin, use cookie cutters to cut shapes from both pans of gelatin (glitter and food coloring), carefully remove them from the pan with a spatula or your fingers, and use them to decorate a window. (Ask a parent first, since some glitter may find its way to the floor!) Don’t get frustrated if they break, since you can stick them back together on the window.
IMG_3641
Step 9. Observe your window jellies each day to see what happens when the water evaporates from the gelatin.
IMG_3688When they’re dry, peel them off the window. Are they thinner than when you started? Why? Can you re-hydrate them by soaking the dried shapes in water?
IMG_3691The Science Behind the Fun:

Imagine half a box filled with red balls and the other half filled with yellow ones.  If you set the box on something that vibrates, the balls will move around randomly, until the red and yellow balls are evenly mixed up.

Scientists call this process, when molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules DIFFUSION. When the molecules are evenly spread throughout the space, it is called EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids (semiconductors for computers are made by diffusing elements into one another.)

Think about the way pollutants move from one place to another through air, water and even soil. Or consider how bacteria are able to take up the substances they need to thrive. Your body has to transfer oxygen, carbon dioxide and water by processes involving diffusion as well.

Why does glitter float on gelatin? An object’s density and it’s shape help determine its buoyancy, or whether it will float or sink. Density is an object’s mass (loosely defined as its weight) divided by its volume (how much space it takes up.) A famous scientist named Archimedes discovered that any floating object displaces its own weight of fluid. Boats have to be designed in shapes that will displace, or push, at least as much water as they weigh in order to float.

For example, a 100 pound block of metal won’t move much water out of the way, and sinks fast since it’s denser than water. However , a 100 pound block of metal reshaped into a boat pushes more water out of the way and will float if you design it well!

What is the shape of your glitter? Does it float or sink in the gelatin?

Here’s a video I made for KidScience app that demonstrates how to make window gellies

Credit: My 11 YO daughter came up with the brilliant idea to stick this experiment on windows. I was just going to dry out the gelatin shapes to make ornaments. Kids are often way more creative than adults!

Candy Science: Icy Worm Pond

 - by KitchenPantryScientist

If you got any sour gummy worms for Halloween, they’re probably coated with sweet-sour powder made from citric acid  and sugar crystals. Using the same science used to make rock candy, you can use sour gummy worms to crystallize sugar syrup and make an”icy worm pond.” It’s even more fun to add sugar cubes to your pond! After a few days, you can chip your worms out of the “ice” to see how they taste. I created this experiment for Imperial Sugar and Dixie Crystals. Check it out on their website (click here) for directions and to learn more about the science behind the fun!

icy-worm-pond

 

If you don’t have sour worms, try coating other (non-chocolate) candy with sugar by dipping it in water, rolling it in sugar and letting it dry before you add it to your pond. It would be fun to do this experiment with Swedish fish, or lifesavers! 

Can you make up an experiment using Halloween Candy? Comment on this post with the experiment you created and you could win a copy of Kitchen Science Lab for Kids*!

*Winner will be chosen at random.

 

 

Farm Science

 - by KitchenPantryScientist
IMG_2944

We learned about some of the crops grown in Kansas. This is winter wheat.

Farmers have always depended on science and technology to raise food and animals, and on a recent visit to my friend’s farm, we learned about how farmers use this knowledge every day.

Debbie Lyons-Blythe and her family operate a farm near Manhattan, Kansas, in the midst of the beautiful Flint Hills, and she muses about ranching and life on her blog Life on a Kansas Cattle Ranch.

IMG_2939

Debbie gave us an amazing tour!

Not long after piling into Debbie’s pickup truck with my three kids and mom, we were lucky enough to roll down our windows and witness the birth of a calf from about 5o meters away.

It was fascinating, and we learned about how a calf’s mother always eats the placenta, licks the calf thoroughly to warm it up, and tries to get it on its feet as soon as possible, in case predators are lurking nearby. My kid were simultaneously amazed and queasy.

We watched as another calf was weighed and tagged and then left to see the rest of the farm. By the time we returned, the calf was standing on wobbly legs next to it’s mom.

A large percentage of Debbie’s farm is pasture, where the cattle spend the majority of their time.  Like much of the country, Kansas was desperate for rain during our visit, and while driving around the farm, we saw an area that had accidentally caught fire earlier that week.

Here's the solar panel, for the pump on a well. You can see the old windmill.

Here’s the solar panel, for the pump on a well. You can see the old windmill.

Luckily, there was a well nearby, powered by a solar pump, and they were able to control the blaze. Much of the prairie grassland is burned on purpose every year to prevent brush from growing up and allowing the growth of new prairie grasses. In fact, the great prairies of America’s Midwest wouldn’t exist if it weren’t for the burning that humans have instigated for centuries to keep grazing animals nearby! Here’s a nice article about it from NPR. 

As we drove past several Angus bulls, Debbie told us that modern science, like DNA analysis of skin tags from hairs plucked from bulls, allows ranchers to learn a huge amount about the about the animals they are raising. They can even predict what kind of fats will marble the steaks harvested from the offspring of the cattle on their ranch.

We visited a nearby feedlot, where cattle are fattened on grain before they go to market as meat and learned that tiny wasps are often used to help control the flies that bother the cattle. Ranchers on horseback patrolled the lots, keeping an eye out for unwell animals. If a cow is sick, they remove it to a different pen, treat it, and give it a new ear tag if it’s been treated with antibiotics. This is how they keep track of animals for food labeling, which we had an interesting conversation about.

patrolling the feedlot to make sure the cattle are healthy

patrolling the feedlot to make sure the cattle are healthy

Personally, I like to know where the meat I buy comes from (called country of origin labeling), what the cattle have eaten and whether they’ve been fed antibiotics. However, Debbie told us that other countries have threatened to stop importing American beef if we label country of origin. She also suggested that many people don’t really care where their beef was raised, or can’t afford to buy antibiotic-free, local beef, which is absolutely true. We also learned that country of origin labeling comes from the ranchers’ pockets, so it’s an added expense for them. Clearly, it’s an important issue, that many people feel passionately about on both sides.

Although I’m opposed to feeding meat animals antibiotics to speed growth, measures must be taken to protect older cattle from anaplasmosis, a deadly tick-born disease endemic to parts of the Midwest. To keep “cattle that are breeding stock–they are older and are not to be consumed as beef,” safe, they are fed a very low level of antibiotics in their salt and mineral supplement throughout the summer during fly and tick season. The cattle are on pasture and eat the supplement by choice, according to Debbie.  Hopefully, a vaccine for anaplasmosis will be developed soon, and antibiotic treatment will no longer be necessary.

We really enjoyed our visit to Debbie’s ranch, and look forward to seeing how farming and science move into the future together to feed a growing population. For an interesting article on feeding the world, read this great National Geographic article, A Five Step Plan to Feed the World, by Jonathan Foley.

IMG_2951

The new baby and her mama are right behind us!

 

Homemade Sticky Window Gellies (Decorative Diffusion, Floatation and Evaporation Experiment)

 - by KitchenPantryScientist

What happens when food coloring molecules move, or DIFFUSE through gelatin, the substance that makes jello jiggle?

IMG_3674

This creative science experiment that my kids and I invented lets you play with floatation physics by sprinkling glitter on melted gelatin, watch colorful dyes diffuse to create patterns and then use cookie cutters to punch out sticky window decorations.  Water will evaporate from the gelatin, leaving you with paper-thin “stained glass” shapes.

You can watch us making them on Kare11 Sunrise News by clicking here.

You’ll need

-plain, unflavored gelatin from the grocery store or Target

-food coloring

a drinking straw

-water

-a ruler

-glitter

*You can use the recipe below for two pans around 8×12 inches, or use large, rimmed cookie sheets for your gelatin. For a single pan, cut the recipe in half.

Step 1. Add 6 packs of plain, unflavored gelatin (1 oz or 28 gm) to 4 cups of boiling water. Stir well until all the gelatin has dissolved and remove bubbles with a spoon.

Step 2. Allow gelatin to cool to a kid-safe temperature. Pour the liquid gelatin into two large pans so it’s around 1-1.5 cm deep. It doesn’t have to be exact.

Step 3. Sprinkle glitter on the gelatin in one pan.  What happens?
IMG_3623
Step 4. Allow the gelatin to harden in both pans.

Step 5. In the pan with no glitter, use a straw to create holes in the gelatin, a few cm apart, scattered across the surface. It works best to poke a straw straight into the gelatin, but not all the way to the bottom. Spin the straw and remove it. Then, use a toothpick or skewer to pull out the gelatin plug you’ve created. This will leave a perfect hole for the food coloring. Very young children may need help.
IMG_3628
Step 6. Add a drop of food coloring to each hole in the gelatin.
IMG_3640
Step 7. Let the gelatin pans sit for 24 hours. Every so often, use a ruler to measure the circle of food coloring molecules as they diffuse (move) into the gelatin around them (read about diffusion at the bottom of this post.)  How many cm per hour is the color diffusing?  Do some colors diffuse faster than others? If you put one pan in the refrigerator and an identical one at room temperature, does the food coloring diffuse at the same rate?

Step 8. When the food coloring has made colorful circles in the gelatin, use cookie cutters to cut shapes from both pans of gelatin (glitter and food coloring), carefully remove them from the pan with a spatula or your fingers, and use them to decorate a window. (Ask a parent first, since some glitter may find its way to the floor!) Don’t get frustrated if they break, since you can stick them back together on the window.
IMG_3641
Step 9. Observe your window jellies each day to see what happens when the water evaporates from the gelatin.
IMG_3688When they’re dry, peel them off the window. Are they thinner than when you started? Why? Can you re-hydrate them by soaking the dried shapes in water?
IMG_3691The Science Behind the Fun:

Imagine half a box filled with red balls and the other half filled with yellow ones.  If you set the box on something that vibrates, the balls will move around randomly, until the red and yellow balls are evenly mixed up.

Scientists call this process, when molecules move from areas of high concentration, where there are lots of other similar molecules, to areas of low concentration, where there are fewer similar molecules DIFFUSION. When the molecules are evenly spread throughout the space, it is called EQUILIBRIUM. 

Lots of things can affect how fast molecules diffuse, including temperature.  When molecules are heated up, they vibrate faster and move around faster, which helps them reach equilibrium more quickly than they would if it were cold. Diffusion takes place in gases like air, liquids like water, and even solids (semiconductors for computers are made by diffusing elements into one another.)

Think about the way pollutants move from one place to another through air, water and even soil. Or consider how bacteria are able to take up the substances they need to thrive. Your body has to transfer oxygen, carbon dioxide and water by processes involving diffusion as well.

Why does glitter float on gelatin? An object’s density and it’s shape help determine its buoyancy, or whether it will float or sink. Density is an object’s mass (loosely defined as its weight) divided by its volume (how much space it takes up.) A famous scientist named Archimedes discovered that any floating object displaces its own weight of fluid. Boats have to be designed in shapes that will displace, or push, at least as much water as they weigh in order to float.

For example, a 100 pound block of metal won’t move much water out of the way, and sinks fast since it’s denser than water. However , a 100 pound block of metal reshaped into a boat pushes more water out of the way and will float if you design it well!

What is the shape of your glitter? Does it float or sink in the gelatin?

Here’s a video I made for KidScience app that demonstrates how to make window gellies

Credit: My 11 YO daughter came up with the brilliant idea to stick this experiment on windows. I was just going to dry out the gelatin shapes to make ornaments. Kids are often way more creative than adults!