Holiday Science: Candy Cane Art

 - by KitchenPantryScientist

Crying over broken candy canes? Cry no more. Make art!

Candy Cane Art- image KitchenPantryScientist.com

Candy Cane Art- image KitchenPantryScientist.com

This project is from “Amazing (Mostly) Edible Science,” by Andrew Schloss.  For a cookbook full of delicious recipes and the Science-Behind-the-Fun, buy my book Kitchen Science Lab for Kids: Edible Edition here!

*Melted candy can get dangerously hot, so parental supervision is required!

You’ll need:

-candy canes (broken or whole), wrappers removed

-heavy-duty aluminum foil

-a cookie sheet

-a wire cooling rack

-an oven

img_5758

What to do:

  1. Preheat oven to 250F.
  2. Cover cookie sheet with foil
  3. Place candy canes on foil, not touching each other
  4. Bake candy canes for around 10 minutes and have an adult check them. They should be stretchy, but not too hot to touch.img_5761
  5. When the candy canes are ready, bend, fold, twist and pull them into cool shapes. Try pulling one long and wrapping it around a chopstick to make a spiral. What else could you try?
  6. If the candy gets to brittle to work with, put it back in the oven for a few minutes to make it soft again.
Candy Cane Art- image KitchenPantryScientistcom

Candy Cane Art- image KitchenPantryScientistcom

The science behind the fun:

If you looks at the ingredients of candy canes, they’re usually made of table sugar (sucrose), corn syrup, flavoring, and food coloring. Glucose and fructose are sweet-tasting molecules that stick together to make up most of the sugars we eat, like table sugar (sucrose) and corn syrup. You can think of them as the building blocks of candy.

At room temperature, candy canes are hard and brittle, but adding heat changes the way the molecules behave. Both table sugar and corn syrup contain linked molecules of glucose and fructose, but corn syrup has much more fructose than glucose, and the fructose interferes with sugar crystal formation. According to Andrew Schloss, “the corn syrup has more fructose, which means the sugar crystals in the candy don’t fit tightly together. The crystals have space between them, which allows them to bend and move without cracking.

Here’s a great article on the science of candy-making.

If you’re looking for holiday gifts for a science-loving kid, my books Chemistry Lab for Kids, Kitchen Science Lab for Kids and Outdoor Science Lab for Kids include over 100 fun family-friendly experiments! They’re available wherever books are sold.

Leave a comment